Catalina Bolancé, Ramon Alemany, Alemar E. Padilla Barreto
{"title":"Impact of D-Vine Structure on Risk Estimation","authors":"Catalina Bolancé, Ramon Alemany, Alemar E. Padilla Barreto","doi":"10.21314/JOR.2018.384","DOIUrl":null,"url":null,"abstract":"In this paper, a sensitivity analysis using pair–copula decomposition of multivariate dependency models is performed on estimates of value-at-risk (VaR) and conditional value-at-risk (CVaR). To illustrate the results, we use four financial share portfolios selected to exemplify this purpose. For each share, we calculate filtered log returns using autoregressive moving average–generalized autoregressive conditional heteroscedasticity models and study their dependence. We analyze how selecting pairs of assets to define vines prior to pair–copula decomposition affects the estimated VaR and CVaR. Further, using bootstrap confidence intervals, we compare the results of different risk measures obtained by employing alternative measures of dependence to select the order in which the drawable vine (D-vine) is defined in different portfolios. Moreover, we carry out a simulation study to analyze the finite sample properties of the different criteria for selecting the pair–copula decomposition associated with the D-vine. We find some differences between the results obtained for VaR and CVaR.","PeriodicalId":46697,"journal":{"name":"Journal of Risk","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/JOR.2018.384","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, a sensitivity analysis using pair–copula decomposition of multivariate dependency models is performed on estimates of value-at-risk (VaR) and conditional value-at-risk (CVaR). To illustrate the results, we use four financial share portfolios selected to exemplify this purpose. For each share, we calculate filtered log returns using autoregressive moving average–generalized autoregressive conditional heteroscedasticity models and study their dependence. We analyze how selecting pairs of assets to define vines prior to pair–copula decomposition affects the estimated VaR and CVaR. Further, using bootstrap confidence intervals, we compare the results of different risk measures obtained by employing alternative measures of dependence to select the order in which the drawable vine (D-vine) is defined in different portfolios. Moreover, we carry out a simulation study to analyze the finite sample properties of the different criteria for selecting the pair–copula decomposition associated with the D-vine. We find some differences between the results obtained for VaR and CVaR.
期刊介绍:
This international peer-reviewed journal publishes a broad range of original research papers which aim to further develop understanding of financial risk management. As the only publication devoted exclusively to theoretical and empirical studies in financial risk management, The Journal of Risk promotes far-reaching research on the latest innovations in this field, with particular focus on the measurement, management and analysis of financial risk. The Journal of Risk is particularly interested in papers on the following topics: Risk management regulations and their implications, Risk capital allocation and risk budgeting, Efficient evaluation of risk measures under increasingly complex and realistic model assumptions, Impact of risk measurement on portfolio allocation, Theoretical development of alternative risk measures, Hedging (linear and non-linear) under alternative risk measures, Financial market model risk, Estimation of volatility and unanticipated jumps, Capital allocation.