Adoption and impacts of improved post-harvest technologies on food security and welfare of maize-farming households in Tanzania: a comparative assessment
Christopher Mutungi, Julius Manda, Shiferaw Feleke, Adebayo Abass, Mateete Bekunda, Irmgard Hoschle-Zeledon, Gundula Fischer
{"title":"Adoption and impacts of improved post-harvest technologies on food security and welfare of maize-farming households in Tanzania: a comparative assessment","authors":"Christopher Mutungi, Julius Manda, Shiferaw Feleke, Adebayo Abass, Mateete Bekunda, Irmgard Hoschle-Zeledon, Gundula Fischer","doi":"10.1007/s12571-023-01365-5","DOIUrl":null,"url":null,"abstract":"<div><h2>Abstract\n</h2><div><p>During the last decade, post-harvest losses (PHL) reduction has been topping the agenda of governments as a pathway for addressing food security, poverty, and nutrition challenges in Africa. Using survey data from 579 households, we investigated the factors that affect farmers’ decisions to adopt post-harvest technologies: mechanized shelling, drying tarpaulins, and airtight storage validated for reducing PHL in Tanzania’s maize-based systems, and the impacts on households’ food security and welfare. Mechanized shelling addressed a labor issue, while tarpaulins and airtight storage addressed product quality and quantity concerns. The results revealed large farm sizes and location in higher production potential zones (proxies for higher production scale) and neighbors' use of the technologies as universal drivers for adoption. Access to credit and off-farm income were unique determinants for airtight storage, while group membership increased the probability of adopting drying tarpaulin and airtight storage. The technologies have positive impacts on food security and welfare: drying tarpaulins and airtight storage significantly increased food availability (18–27%), food access (24–26%), and household incomes (112–155%), whereas mechanized shelling improved food and total expenditures by 49% and 68%, respectively. The share of total household expenditure on food decreased by 42%, 11%, and 51% among tarpaulin, mechanized shelling, and airtight storage adopter households, signaling significant improvements in food security and reductions in vulnerability. The results point to the need for policy support to enhance the adoption of these technologies, knowledge sharing among farmers, and financial resources access to support investments in the technologies.\n</p></div></div>","PeriodicalId":567,"journal":{"name":"Food Security","volume":"15 4","pages":"1007 - 1023"},"PeriodicalIF":5.6000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12571-023-01365-5.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Security","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12571-023-01365-5","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract
During the last decade, post-harvest losses (PHL) reduction has been topping the agenda of governments as a pathway for addressing food security, poverty, and nutrition challenges in Africa. Using survey data from 579 households, we investigated the factors that affect farmers’ decisions to adopt post-harvest technologies: mechanized shelling, drying tarpaulins, and airtight storage validated for reducing PHL in Tanzania’s maize-based systems, and the impacts on households’ food security and welfare. Mechanized shelling addressed a labor issue, while tarpaulins and airtight storage addressed product quality and quantity concerns. The results revealed large farm sizes and location in higher production potential zones (proxies for higher production scale) and neighbors' use of the technologies as universal drivers for adoption. Access to credit and off-farm income were unique determinants for airtight storage, while group membership increased the probability of adopting drying tarpaulin and airtight storage. The technologies have positive impacts on food security and welfare: drying tarpaulins and airtight storage significantly increased food availability (18–27%), food access (24–26%), and household incomes (112–155%), whereas mechanized shelling improved food and total expenditures by 49% and 68%, respectively. The share of total household expenditure on food decreased by 42%, 11%, and 51% among tarpaulin, mechanized shelling, and airtight storage adopter households, signaling significant improvements in food security and reductions in vulnerability. The results point to the need for policy support to enhance the adoption of these technologies, knowledge sharing among farmers, and financial resources access to support investments in the technologies.
期刊介绍:
Food Security is a wide audience, interdisciplinary, international journal dedicated to the procurement, access (economic and physical), and quality of food, in all its dimensions. Scales range from the individual to communities, and to the world food system. We strive to publish high-quality scientific articles, where quality includes, but is not limited to, the quality and clarity of text, and the validity of methods and approaches.
Food Security is the initiative of a distinguished international group of scientists from different disciplines who hold a deep concern for the challenge of global food security, together with a vision of the power of shared knowledge as a means of meeting that challenge. To address the challenge of global food security, the journal seeks to address the constraints - physical, biological and socio-economic - which not only limit food production but also the ability of people to access a healthy diet.
From this perspective, the journal covers the following areas:
Global food needs: the mismatch between population and the ability to provide adequate nutrition
Global food potential and global food production
Natural constraints to satisfying global food needs:
§ Climate, climate variability, and climate change
§ Desertification and flooding
§ Natural disasters
§ Soils, soil quality and threats to soils, edaphic and other abiotic constraints to production
§ Biotic constraints to production, pathogens, pests, and weeds in their effects on sustainable production
The sociological contexts of food production, access, quality, and consumption.
Nutrition, food quality and food safety.
Socio-political factors that impinge on the ability to satisfy global food needs:
§ Land, agricultural and food policy
§ International relations and trade
§ Access to food
§ Financial policy
§ Wars and ethnic unrest
Research policies and priorities to ensure food security in its various dimensions.