{"title":"Deep Learning Approaches for Dynamic Object Understanding and Defect Detection","authors":"Yuan Chang, W. Gunarathne, T. Shih","doi":"10.3966/160792642020052103015","DOIUrl":null,"url":null,"abstract":"Industrial product defect detection has been known for a while to make sure the released products meet the expected requirements. Earlier, product defect detection was commonly done manually by humans; they have detected whether the products consist of defects or not by using their human senses based on the standard. In this industrial era, product defect detection is expected to be faster and more accurate, while humans could be exhausted and become slower and less reliable. Deep learning technology is very famous in the field of image processing, such as image classification, object detection, object tracking, and of course the defect detection. In this study, we propose a novel automated solution system to identify the good and defective products on a production line using deep learning technology. In the experiment, we have compared several algorithms of defect detections using a data set, which comprises 20 categories of objects and 50 images in each category. The experimental results demonstrated that the proposed system had produced effective results within a short time.","PeriodicalId":50172,"journal":{"name":"Journal of Internet Technology","volume":"21 1","pages":"783-790"},"PeriodicalIF":0.9000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3966/160792642020052103015","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Industrial product defect detection has been known for a while to make sure the released products meet the expected requirements. Earlier, product defect detection was commonly done manually by humans; they have detected whether the products consist of defects or not by using their human senses based on the standard. In this industrial era, product defect detection is expected to be faster and more accurate, while humans could be exhausted and become slower and less reliable. Deep learning technology is very famous in the field of image processing, such as image classification, object detection, object tracking, and of course the defect detection. In this study, we propose a novel automated solution system to identify the good and defective products on a production line using deep learning technology. In the experiment, we have compared several algorithms of defect detections using a data set, which comprises 20 categories of objects and 50 images in each category. The experimental results demonstrated that the proposed system had produced effective results within a short time.
期刊介绍:
The Journal of Internet Technology accepts original technical articles in all disciplines of Internet Technology & Applications. Manuscripts are submitted for review with the understanding that they have not been published elsewhere.
Topics of interest to JIT include but not limited to:
Broadband Networks
Electronic service systems (Internet, Intranet, Extranet, E-Commerce, E-Business)
Network Management
Network Operating System (NOS)
Intelligent systems engineering
Government or Staff Jobs Computerization
National Information Policy
Multimedia systems
Network Behavior Modeling
Wireless/Satellite Communication
Digital Library
Distance Learning
Internet/WWW Applications
Telecommunication Networks
Security in Networks and Systems
Cloud Computing
Internet of Things (IoT)
IPv6 related topics are especially welcome.