{"title":"Design and performance evaluation of a high temperature axisymmetric plug nozzle","authors":"Ahmed ABDALLAH ELHIRTSI, T. Zebbiche","doi":"10.13111/2066-8201.2023.15.3.1","DOIUrl":null,"url":null,"abstract":"In this study, a method for designing supersonic nozzles with axisymmetric plugs at high temperature has been proposed. The approach is based on the theory of Prandtl-Mayer expansion at high temperatures using the method of characteristics. For this purpose, a code in FORTRAN language was developed in order to obtain the nozzle design. Once the latter was obtained, we were interested in the evolution of the thermodynamic parameters of the flow such as pressure, temperature, and Mach number. The results achieved were confronted with those obtained for a perfect gas model. Regarding the design parameters (length, section ratio, thrust coefficient and mass coefficient), we found that the PG model gives very satisfactory results for values of 𝑀𝑀 and 𝑇𝑇0 below 2.00 and 1000 𝐾𝐾, respectively.\nAs 𝑀𝑀𝐸𝐸 and 𝑇𝑇0 increase, this affects performance, requiring the use of our HT model to correct the calculations. In order to minimize the weight of this nozzle, this research is investigating the truncation of the Plug nozzle to increase its performances. All calculations were performed for air.","PeriodicalId":37556,"journal":{"name":"INCAS Bulletin","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INCAS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13111/2066-8201.2023.15.3.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a method for designing supersonic nozzles with axisymmetric plugs at high temperature has been proposed. The approach is based on the theory of Prandtl-Mayer expansion at high temperatures using the method of characteristics. For this purpose, a code in FORTRAN language was developed in order to obtain the nozzle design. Once the latter was obtained, we were interested in the evolution of the thermodynamic parameters of the flow such as pressure, temperature, and Mach number. The results achieved were confronted with those obtained for a perfect gas model. Regarding the design parameters (length, section ratio, thrust coefficient and mass coefficient), we found that the PG model gives very satisfactory results for values of 𝑀𝑀 and 𝑇𝑇0 below 2.00 and 1000 𝐾𝐾, respectively.
As 𝑀𝑀𝐸𝐸 and 𝑇𝑇0 increase, this affects performance, requiring the use of our HT model to correct the calculations. In order to minimize the weight of this nozzle, this research is investigating the truncation of the Plug nozzle to increase its performances. All calculations were performed for air.
期刊介绍:
INCAS BULLETIN is a scientific quartely journal published by INCAS – National Institute for Aerospace Research “Elie Carafoli” (under the aegis of The Romanian Academy) Its current focus is the aerospace field, covering fluid mechanics, aerodynamics, flight theory, aeroelasticity, structures, applied control, mechatronics, experimental aerodynamics, computational methods. All submitted papers are peer-reviewed. The journal will publish reports and short research original papers of substance. Unique features distinguishing this journal: R & D reports in aerospace sciences in Romania The INCAS BULLETIN of the National Institute for Aerospace Research "Elie Carafoli" includes the following sections: 1) FULL PAPERS. -Strength of materials, elasticity, plasticity, aeroelasticity, static and dynamic analysis of structures, vibrations and impact. -Systems, mechatronics and control in aerospace. -Materials and tribology. -Kinematics and dynamics of mechanisms, friction, lubrication. -Measurement technique. -Aeroacoustics, ventilation, wind motors. -Management in Aerospace Activities. 2) TECHNICAL-SCIENTIFIC NOTES and REPORTS. Includes: case studies, technical-scientific notes and reports on published areas. 3) INCAS NEWS. Promote and emphasise INCAS technical base and achievements. 4) BOOK REVIEWS.