Combined effects of traffic intensity, skid trail slope, skidder type, and soil moisture content on soil degradation in the Hyrcanian forest of Iran

IF 2.1 3区 农林科学 Q2 FORESTRY International Journal of Forest Engineering Pub Date : 2023-07-19 DOI:10.1080/14942119.2023.2229701
A. Solgi, M. Lotfalian, Alireza Rafiei, E. Marchi, U. Ilstedt
{"title":"Combined effects of traffic intensity, skid trail slope, skidder type, and soil moisture content on soil degradation in the Hyrcanian forest of Iran","authors":"A. Solgi, M. Lotfalian, Alireza Rafiei, E. Marchi, U. Ilstedt","doi":"10.1080/14942119.2023.2229701","DOIUrl":null,"url":null,"abstract":"ABSTRACT Skidding operations affect soil physical properties, which may impact soil sustainability and forest productivity. While the relationship among harvest machine traffic, slope gradients, and increased soil damage has been well-investigated, it is still unclear how soil damage due to repeated passes of different skidder types is interacting with soil moisture and slope conditions. We examined dry bulk density (BD), total porosity (TP), and rutting depth (RD) of skid trail soil in an Iranian temperate forest. The study took into consideration a combination of five different traffic intensities (TI) (1, 4, 8, 12, and 15 passes), two levels of slope gradients (SGs) (≤20% and > 20%), two rubber-tired skidder types (STs) (Timberjack 450C and TAF E655), and two soil moisture contents (SMC) (18% and 31%). Results showed that changes in BD and TP were mainly related to TI regardless of the ST and the skid trail slope. Regardless of TI, SG, and SMC, the TAF E655 skidder caused a higher dry BD increase and soil porosity reduction than the Timberjack 450C. Furthermore, the higher the SMC, the deeper the ruts at all combinations of TI, SG, and ST. Our findings highlighted that ST, SMC, TI, and SG strongly affect rutting and physical properties of soil.","PeriodicalId":55998,"journal":{"name":"International Journal of Forest Engineering","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forest Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/14942119.2023.2229701","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Skidding operations affect soil physical properties, which may impact soil sustainability and forest productivity. While the relationship among harvest machine traffic, slope gradients, and increased soil damage has been well-investigated, it is still unclear how soil damage due to repeated passes of different skidder types is interacting with soil moisture and slope conditions. We examined dry bulk density (BD), total porosity (TP), and rutting depth (RD) of skid trail soil in an Iranian temperate forest. The study took into consideration a combination of five different traffic intensities (TI) (1, 4, 8, 12, and 15 passes), two levels of slope gradients (SGs) (≤20% and > 20%), two rubber-tired skidder types (STs) (Timberjack 450C and TAF E655), and two soil moisture contents (SMC) (18% and 31%). Results showed that changes in BD and TP were mainly related to TI regardless of the ST and the skid trail slope. Regardless of TI, SG, and SMC, the TAF E655 skidder caused a higher dry BD increase and soil porosity reduction than the Timberjack 450C. Furthermore, the higher the SMC, the deeper the ruts at all combinations of TI, SG, and ST. Our findings highlighted that ST, SMC, TI, and SG strongly affect rutting and physical properties of soil.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
交通强度、滑道坡度、滑道类型和土壤含水量对伊朗海卡尼亚森林土壤退化的综合影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
21.10%
发文量
33
期刊最新文献
Productivity benchmarks for unguyed excavator-based tower yarders Novel approach for forest road maintenance using smartphone sensor data and deep learning methods Machine learning applications in forest and biomass supply chain management: a review Mechanical site preparation in South Africa: comparing the productivity of pitting machine operators under different site conditions Stem recovery and harvesting productivity of two different harvesting systems in final felling of Pinus patula
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1