{"title":"Predicting Bitcoin Return Using Extreme Value Theory","authors":"Mohammad Tariquel Islam, K. Das","doi":"10.1080/01966324.2021.1950086","DOIUrl":null,"url":null,"abstract":"Abstract The study investigates and develops the ability of the extreme value theory (EVT) to predict bitcoin return. EVT is used to deal with rare but extreme events, such as severe losses or excessive damages. It is being used as a powerful statistical tool in various disciplines, including finance, engineering, environmental science, and actuarial science. As the largest among all cryptocurrencies in existence, bitcoin’s behavior is primarily characterized by great volatility. Predicting bitcoin return is complex and important, primarily because of the extreme nature of its return. There is not enough substantial research involving EVT in bitcoin analysis. This study has three objectives. First, confirming the extreme nature of bitcoin return by various statistical tests; second, modeling the bitcoin return using two different EVT approaches (block maxima approach and peak over threshold approach); and third, assessing uncertainties by predicting bitcoin return levels for 5-, 10-, 20-, 50-, and 100-years with a 95% confidence interval using both of these methods. These results could certainly serve policymakers and investors, as these return levels can be useful in characterizing bearish and bullish trends and predicting the same. Moreover, these can serve as starting points for future studies regarding the stationary and non-stationary properties of bitcoin return.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"40 1","pages":"177 - 187"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2021.1950086","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2021.1950086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The study investigates and develops the ability of the extreme value theory (EVT) to predict bitcoin return. EVT is used to deal with rare but extreme events, such as severe losses or excessive damages. It is being used as a powerful statistical tool in various disciplines, including finance, engineering, environmental science, and actuarial science. As the largest among all cryptocurrencies in existence, bitcoin’s behavior is primarily characterized by great volatility. Predicting bitcoin return is complex and important, primarily because of the extreme nature of its return. There is not enough substantial research involving EVT in bitcoin analysis. This study has three objectives. First, confirming the extreme nature of bitcoin return by various statistical tests; second, modeling the bitcoin return using two different EVT approaches (block maxima approach and peak over threshold approach); and third, assessing uncertainties by predicting bitcoin return levels for 5-, 10-, 20-, 50-, and 100-years with a 95% confidence interval using both of these methods. These results could certainly serve policymakers and investors, as these return levels can be useful in characterizing bearish and bullish trends and predicting the same. Moreover, these can serve as starting points for future studies regarding the stationary and non-stationary properties of bitcoin return.