Mortality forecasting using a Lexis-based state-space model

IF 1.5 Q3 BUSINESS, FINANCE Annals of Actuarial Science Pub Date : 2020-09-11 DOI:10.1017/S1748499520000275
Patrik Andersson, M. Lindholm
{"title":"Mortality forecasting using a Lexis-based state-space model","authors":"Patrik Andersson, M. Lindholm","doi":"10.1017/S1748499520000275","DOIUrl":null,"url":null,"abstract":"Abstract A new method of forecasting mortality is introduced. The method is based on the continuous-time dynamics of the Lexis diagram, which given weak assumptions implies that the death count data are Poisson distributed. The underlying mortality rates are modelled with a hidden Markov model (HMM) which enables a fully likelihood-based inference. Likelihood inference is done by particle filter methods, which avoids approximating assumptions and also suggests natural model validation measures. The proposed model class contains as special cases many previous models with the important difference that the HMM methods make it possible to estimate the model efficiently. Another difference is that the population and latent variable variability can be explicitly modelled and estimated. Numerical examples show that the model performs well and that inefficient estimation methods can severely affect forecasts.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":"15 1","pages":"519 - 548"},"PeriodicalIF":1.5000,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1748499520000275","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1748499520000275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract A new method of forecasting mortality is introduced. The method is based on the continuous-time dynamics of the Lexis diagram, which given weak assumptions implies that the death count data are Poisson distributed. The underlying mortality rates are modelled with a hidden Markov model (HMM) which enables a fully likelihood-based inference. Likelihood inference is done by particle filter methods, which avoids approximating assumptions and also suggests natural model validation measures. The proposed model class contains as special cases many previous models with the important difference that the HMM methods make it possible to estimate the model efficiently. Another difference is that the population and latent variable variability can be explicitly modelled and estimated. Numerical examples show that the model performs well and that inefficient estimation methods can severely affect forecasts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于Lexis的状态空间模型进行死亡率预测
摘要介绍了一种预测死亡率的新方法。该方法基于Lexis图的连续时间动力学,它给出的弱假设意味着死亡计数数据是泊松分布的。潜在死亡率采用隐马尔可夫模型(HMM)建模,该模型可实现完全基于似然的推断。通过粒子滤波方法进行似然推断,避免了近似假设,并提出了自然的模型验证方法。所提出的模型类包含了许多以前的模型作为特殊情况,其重要区别在于HMM方法可以有效地估计模型。另一个不同之处在于,总体和潜在变量可变性可以被明确地建模和估计。数值算例表明,该模型性能良好,但低效的估计方法会严重影响预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
期刊最新文献
Generalized Poisson random variable: its distributional properties and actuarial applications Optimizing insurance risk assessment: a regression model based on a risk-loaded approach Bonus-Malus Scale premiums for Tweedie’s compound Poisson models Risk analysis of a multivariate aggregate loss model with dependence Valuation of guaranteed minimum accumulation benefits (GMABs) with physics-inspired neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1