ANALYSIS OF MESOSTRUCTURE AND FRACTURE KINETICS OF ELEMENTS OF LATTICE COMPOSITE STRUCTURES UNDER TRANSVERSAL COMPRESSION USING STOCHASTIC FEA MICROMECHANICS

Q3 Materials Science PNRPU Mechanics Bulletin Pub Date : 2022-12-15 DOI:10.15593/perm.mech/2022.4.06
S. Sapozhnikov, N. Shaburova, A. Ignatova, A. N. Shanygin
{"title":"ANALYSIS OF MESOSTRUCTURE AND FRACTURE KINETICS OF ELEMENTS OF LATTICE COMPOSITE STRUCTURES UNDER TRANSVERSAL COMPRESSION USING STOCHASTIC FEA MICROMECHANICS","authors":"S. Sapozhnikov, N. Shaburova, A. Ignatova, A. N. Shanygin","doi":"10.15593/perm.mech/2022.4.06","DOIUrl":null,"url":null,"abstract":"The paper analyses the mesostructure of the structural elements of lattice aircraft shells – ribs consisting of alternating layers of equal thickness and made from unidi-rectional CFRP and pure matrix material. In experimental studies, the elastic characteristics of unidirectional CFRP were obtained under three-point bending and transversal compression. As a result, the longitudinal modulus of elasticity of the layered composite turned out to be 101 GPa, and the shear modulus was 2.95 GPa. Numerical modeling of the meso- and micromechanics of the interaction of the noticed layers under transversal compression has been performed up to failure. The ANSYS FEA software (explicit and implicit formulations) was used. The regular and stochastic stacking of fibres in the cross section under compression is considered. The fiber diameters in the composite element were measured on thin sections using a Zeiss Axio Observer D1m digital microscope and were equal to 5.1 ± 0.8 µm. Layers with a fiber volume fraction of about 60 % alternate with layers of pure epoxy. It is proposed to use only the first principal stress in the matrix as a micromechanical criterion for failure under com-pression and tension. At the first stage of calculations, the problem of transversal compression of a cell with a regular laying of fibres was solved (the error in the value of the transversal modulus of elasticity was less than 2 %). At the second stage, an assessment was made of the strength and accumulation of microdamages under compression in a model of a layered structure with stochastic fibre stacking. The analysis of stress-strain state of a layered mesostructure under compression made it possible to explain the reason that the rib has a trans-verse strength twice lower than that of a homogeneous CFRP. The calculated values of the ultimate strength in transversal compression of a layered rib are in good agreement with the experimental ones.","PeriodicalId":38176,"journal":{"name":"PNRPU Mechanics Bulletin","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNRPU Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15593/perm.mech/2022.4.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

The paper analyses the mesostructure of the structural elements of lattice aircraft shells – ribs consisting of alternating layers of equal thickness and made from unidi-rectional CFRP and pure matrix material. In experimental studies, the elastic characteristics of unidirectional CFRP were obtained under three-point bending and transversal compression. As a result, the longitudinal modulus of elasticity of the layered composite turned out to be 101 GPa, and the shear modulus was 2.95 GPa. Numerical modeling of the meso- and micromechanics of the interaction of the noticed layers under transversal compression has been performed up to failure. The ANSYS FEA software (explicit and implicit formulations) was used. The regular and stochastic stacking of fibres in the cross section under compression is considered. The fiber diameters in the composite element were measured on thin sections using a Zeiss Axio Observer D1m digital microscope and were equal to 5.1 ± 0.8 µm. Layers with a fiber volume fraction of about 60 % alternate with layers of pure epoxy. It is proposed to use only the first principal stress in the matrix as a micromechanical criterion for failure under com-pression and tension. At the first stage of calculations, the problem of transversal compression of a cell with a regular laying of fibres was solved (the error in the value of the transversal modulus of elasticity was less than 2 %). At the second stage, an assessment was made of the strength and accumulation of microdamages under compression in a model of a layered structure with stochastic fibre stacking. The analysis of stress-strain state of a layered mesostructure under compression made it possible to explain the reason that the rib has a trans-verse strength twice lower than that of a homogeneous CFRP. The calculated values of the ultimate strength in transversal compression of a layered rib are in good agreement with the experimental ones.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机有限元微观力学的格构复合材料结构单元横向压缩细观结构和断裂动力学分析
本文分析了由单向碳纤维增强塑料与纯基体材料构成的等厚交替层的格子飞机壳体结构单元——肋板的细观结构。在试验研究中,获得了单向碳纤维布在三点弯曲和横向压缩下的弹性特性。结果表明,层状复合材料的纵向弹性模量为101 GPa,剪切弹性模量为2.95 GPa。数值模拟了横向压缩下各层间相互作用的细观和细观力学,直至破坏为止。采用ANSYS有限元分析软件(显式和隐式)。考虑了纤维在受压截面上的规则和随机堆积。利用蔡司Axio Observer D1m数码显微镜在薄片上测量复合元件的纤维直径为5.1±0.8µm。纤维体积分数约为60%的层与纯环氧树脂层交替。建议仅使用基体中的第一主应力作为压缩和拉伸破坏的微力学判据。在计算的第一阶段,解决了具有规则纤维铺设的单元的横向压缩问题(横向弹性模量值的误差小于2%)。在第二阶段,在随机纤维堆积的层状结构模型中,对压缩下的强度和微损伤积累进行了评估。对层状细观结构的应力-应变状态分析,可以解释肋的横向强度比均质CFRP低2倍的原因。层状肋横向抗压极限强度的计算值与实验值吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PNRPU Mechanics Bulletin
PNRPU Mechanics Bulletin Materials Science-Materials Science (miscellaneous)
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
IDENTIFICATION OF DEFECTS IN A COATING WEDGE BASED ON ULTRASONIC NON-DESTRUCTIVE TESTING METHODS AND CONVOLUTIONAL NEURAL NETWORKS SPECTRAL DYNAMIC STIFFNESS METHOD FOR THE FLUTTER PROBLEM OF COMBINED PLATES PROGRAMMABLE BEHAVIOR OF THE METAMATERIAL BY KINDS OF UNIT CELLS CONNECTION SIMULATION OF ELASTOPLASTIC FRACTURE OF A CENTER CRACKED PLATE MODELING OF 3D-PRINTING PROCESSES FOR COMPOSITE TOOLING AND TRANSFER MOLDING OF GRID STRUCTURES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1