Comparative analysis of supervised machine learning algorithms for heart disease detection

Hector Daniel Huapaya, Ciro Rodriguez, D. Esenarro
{"title":"Comparative analysis of supervised machine learning algorithms for heart disease detection","authors":"Hector Daniel Huapaya, Ciro Rodriguez, D. Esenarro","doi":"10.17993/3ctecno.2020.specialissue5.233-247","DOIUrl":null,"url":null,"abstract":"This paper describes the most prominent algorithms of Supervised Machine Learning (SML), their characteristics, and comparatives in the way of treating data. The Heart Disease dataset obtained from Kaggle was used to determine and test its highest percentage of accuracy. To achieve the objective, Python sklearn libraries were used to implement the selected algorithms, evaluate and determine which algorithm is the one that obtains the best results, applying decision tree algorithms achieved the best prediction results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3ctecno.2020.specialissue5.233-247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper describes the most prominent algorithms of Supervised Machine Learning (SML), their characteristics, and comparatives in the way of treating data. The Heart Disease dataset obtained from Kaggle was used to determine and test its highest percentage of accuracy. To achieve the objective, Python sklearn libraries were used to implement the selected algorithms, evaluate and determine which algorithm is the one that obtains the best results, applying decision tree algorithms achieved the best prediction results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
有监督机器学习算法在心脏病检测中的比较分析
本文介绍了有监督机器学习(SML)中最突出的算法,它们的特点,以及在处理数据方面的比较。从Kaggle获得的心脏病数据集用于确定和测试其最高准确率。为了实现这一目标,使用Python sklearn库来实现所选择的算法,评估并确定哪种算法是获得最佳结果的算法,应用决策树算法获得最佳预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1