Nonlinear sliding-mode control of a bidirectional three-phase converter for plug-in electric vehicles

IF 0.4 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY International Journal of Electric and Hybrid Vehicles Pub Date : 2019-09-27 DOI:10.1504/ijehv.2019.10024318
R. Sabzehgar, Y. M. Roshan
{"title":"Nonlinear sliding-mode control of a bidirectional three-phase converter for plug-in electric vehicles","authors":"R. Sabzehgar, Y. M. Roshan","doi":"10.1504/ijehv.2019.10024318","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a sliding-mode control (SMC) strategy for bidirectional operation of a three-phase pulse width modulation (PWM) converter suitable for plug-in electric vehicles (PEVs). The proposed controller operates the three-phase converter at unity power factor with no steady-state errors. The controller takes advantage of inherent characteristics of sliding-mode controllers such as fast dynamics, low harmonics, and being independent of the load and system parameters. The proposed control strategy keeps the input voltage and current in phase in charging mode, when the converter acts as a rectifier and boost converter. Similarly, controller maintains the input voltage and current of the three-phase system out of phase in discharging mode, when the converter is operated as an inverter. Numerical studies are conducted to evaluate the performance of the proposed controller.","PeriodicalId":43639,"journal":{"name":"International Journal of Electric and Hybrid Vehicles","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electric and Hybrid Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijehv.2019.10024318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a sliding-mode control (SMC) strategy for bidirectional operation of a three-phase pulse width modulation (PWM) converter suitable for plug-in electric vehicles (PEVs). The proposed controller operates the three-phase converter at unity power factor with no steady-state errors. The controller takes advantage of inherent characteristics of sliding-mode controllers such as fast dynamics, low harmonics, and being independent of the load and system parameters. The proposed control strategy keeps the input voltage and current in phase in charging mode, when the converter acts as a rectifier and boost converter. Similarly, controller maintains the input voltage and current of the three-phase system out of phase in discharging mode, when the converter is operated as an inverter. Numerical studies are conducted to evaluate the performance of the proposed controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
插电式电动汽车双向三相变流器的非线性滑模控制
在本文中,我们提出了一种适用于插电式电动汽车(PEV)的三相脉宽调制(PWM)转换器双向操作的滑模控制(SMC)策略。所提出的控制器使三相变换器在单位功率因数下运行,没有稳态误差。该控制器利用了滑模控制器的固有特性,如快速动力学、低谐波以及与负载和系统参数无关。当转换器充当整流器和升压转换器时,所提出的控制策略在充电模式下保持输入电压和电流同相。类似地,当转换器作为逆变器操作时,控制器在放电模式下保持三相系统的输入电压和电流异相。进行了数值研究以评估所提出的控制器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Electric and Hybrid Vehicles
International Journal of Electric and Hybrid Vehicles TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
1.60
自引率
14.30%
发文量
27
期刊介绍: IJEHV provides a high quality, fully refereed international forum in the field of electric and hybrid automotive systems, including in-vehicle electricity production such as hydrogen fuel cells, to describe innovative solutions for the technical challenges enabling these new propulsion technologies.
期刊最新文献
Performance analysis of fuzzy logic-sliding mode controlled induction motor drive An exploration on electric vehicle purchase intention Modelling and analysis of electric two-wheeler with novel planetary gear box transmission Design of energy management strategy in fuel cell/battery/ultracapacitor hybrid vehicles based on a combined forward-backward algorithm and fuzzy control APPLICATION OF BLOCKCHAIN IN INTERNET OF VEHICLES TOWARDS IMPROVEMENT OF SMART TRANSPORTATION SYSTEMS - A CONVERGENCE SURVEY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1