{"title":"Influence of synthetic temperature on structural and magnetic properties of Dy substituted Ni nanoferrite","authors":"Vikas S. Shinde, Ravindra N. Chikhale","doi":"10.1080/01411594.2023.2228968","DOIUrl":null,"url":null,"abstract":"ABSTRACT Dy substituted Ni ferrite nanoparticles with composition NiFe1.95Dy0.05O4 were synthesized by using the citric acid sol–gel auto combustion method. The samples were sintered at temperatures of 400°C, 700°C, and 900°C. The X-ray diffraction measurements clearly showed the formation of a cubic spinel structure along with a small orthoferrite phase for all the sintered samples. The crystallite size increases from 17.79 to 39.36 nm while the grain size increases from 50.70 nm to 83.05 nm. The lattice parameter and lattice volume decrease with increasing sintering temperature was observed. The Spinel ferrite structure of prepared samples has been confirmed from FTIR spectra. With increasing sintering temperature saturation magnetization increases from 25.80 emu/gm to 49.48 emu/gm while the coercivity value decreases from 207.95 Oe to 165.43 Oe. Increasing saturation magnetization and decreasing coercivity values with increasing sintering temperature make the synthesized nanoparticles suitable for high-density data storage devices.","PeriodicalId":19881,"journal":{"name":"Phase Transitions","volume":"96 1","pages":"571 - 583"},"PeriodicalIF":1.3000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phase Transitions","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/01411594.2023.2228968","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Dy substituted Ni ferrite nanoparticles with composition NiFe1.95Dy0.05O4 were synthesized by using the citric acid sol–gel auto combustion method. The samples were sintered at temperatures of 400°C, 700°C, and 900°C. The X-ray diffraction measurements clearly showed the formation of a cubic spinel structure along with a small orthoferrite phase for all the sintered samples. The crystallite size increases from 17.79 to 39.36 nm while the grain size increases from 50.70 nm to 83.05 nm. The lattice parameter and lattice volume decrease with increasing sintering temperature was observed. The Spinel ferrite structure of prepared samples has been confirmed from FTIR spectra. With increasing sintering temperature saturation magnetization increases from 25.80 emu/gm to 49.48 emu/gm while the coercivity value decreases from 207.95 Oe to 165.43 Oe. Increasing saturation magnetization and decreasing coercivity values with increasing sintering temperature make the synthesized nanoparticles suitable for high-density data storage devices.
期刊介绍:
Phase Transitions is the only journal devoted exclusively to this important subject. It provides a focus for papers on most aspects of phase transitions in condensed matter. Although emphasis is placed primarily on experimental work, theoretical papers are welcome if they have some bearing on experimental results. The areas of interest include:
-structural phase transitions (ferroelectric, ferroelastic, multiferroic, order-disorder, Jahn-Teller, etc.) under a range of external parameters (temperature, pressure, strain, electric/magnetic fields, etc.)
-geophysical phase transitions
-metal-insulator phase transitions
-superconducting and superfluid transitions
-magnetic phase transitions
-critical phenomena and physical properties at phase transitions
-liquid crystals
-technological applications of phase transitions
-quantum phase transitions
Phase Transitions publishes both research papers and invited articles devoted to special topics. Major review papers are particularly welcome. A further emphasis of the journal is the publication of a selected number of small workshops, which are at the forefront of their field.