Functional coordinates: Modeling interactions between brain regions as points in a function space.

IF 3.1 3区 医学 Q2 NEUROSCIENCES Network Neuroscience Pub Date : 2022-10-01 eCollection Date: 2022-01-01 DOI:10.1162/netn_a_00264
Craig Poskanzer, Stefano Anzellotti
{"title":"Functional coordinates: Modeling interactions between brain regions as points in a function space.","authors":"Craig Poskanzer, Stefano Anzellotti","doi":"10.1162/netn_a_00264","DOIUrl":null,"url":null,"abstract":"<p><p>Here, we propose a novel technique to investigate nonlinear interactions between brain regions that captures both the strength and type of the functional relationship. Inspired by the field of functional analysis, we propose that the relationship between activity in separate brain areas can be viewed as a point in function space, identified by coordinates along an infinite set of basis functions. Using Hermite polynomials as bases, we estimate a subset of these values that serve as \"functional coordinates,\" characterizing the interaction between BOLD activity across brain areas. We provide a proof of the convergence of the estimates in the limit, and we validate the method with simulations in which the ground truth is known, additionally showing that functional coordinates detect statistical dependence even when correlations (\"functional connectivity\") approach zero. We then use functional coordinates to examine neural interactions with a chosen seed region: the fusiform face area (FFA). Using <i>k</i>-means clustering across each voxel's functional coordinates, we illustrate that adding nonlinear basis functions allows for the discrimination of interregional interactions that are otherwise grouped together when using only linear dependence. Finally, we show that regions in V5 and medial occipital and temporal lobes exhibit significant nonlinear interactions with the FFA.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"6 1","pages":"1296-1315"},"PeriodicalIF":3.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11117108/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00264","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Here, we propose a novel technique to investigate nonlinear interactions between brain regions that captures both the strength and type of the functional relationship. Inspired by the field of functional analysis, we propose that the relationship between activity in separate brain areas can be viewed as a point in function space, identified by coordinates along an infinite set of basis functions. Using Hermite polynomials as bases, we estimate a subset of these values that serve as "functional coordinates," characterizing the interaction between BOLD activity across brain areas. We provide a proof of the convergence of the estimates in the limit, and we validate the method with simulations in which the ground truth is known, additionally showing that functional coordinates detect statistical dependence even when correlations ("functional connectivity") approach zero. We then use functional coordinates to examine neural interactions with a chosen seed region: the fusiform face area (FFA). Using k-means clustering across each voxel's functional coordinates, we illustrate that adding nonlinear basis functions allows for the discrimination of interregional interactions that are otherwise grouped together when using only linear dependence. Finally, we show that regions in V5 and medial occipital and temporal lobes exhibit significant nonlinear interactions with the FFA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
功能坐标:将大脑区域之间的相互作用建模为功能空间中的点
摘要在这里,我们提出了一种新的技术来研究大脑区域之间的非线性相互作用,该技术可以捕捉功能关系的强度和类型。受功能分析领域的启发,我们提出,大脑不同区域的活动之间的关系可以被视为功能空间中的一个点,通过沿着无限组基函数的坐标来识别。使用埃尔米特多项式作为基础,我们估计了这些值的子集,这些值充当“功能坐标”,表征了大脑区域BOLD活动之间的相互作用。我们提供了估计在极限内收敛的证据,并通过已知基本事实的模拟验证了该方法,此外还表明,即使相关性(“函数连通性”)接近零时,函数坐标也能检测统计相关性。然后,我们使用函数坐标来检查神经与选定种子区域的相互作用:纺锤形面部区域(FFA)。通过在每个体素的函数坐标上使用k-means聚类,我们说明了添加非线性基函数允许在仅使用线性依赖性时区分区域间交互,否则这些交互被分组在一起。最后,我们发现V5和内侧枕叶和颞叶的区域与FFA表现出显著的非线性相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
期刊最新文献
Erratum: Structure-function coupling using fixel-based analysis and functional magnetic resonance imaging in Alzheimer's disease and mild cognitive impairment. Brain rewiring during development: A comparative analysis of larval and adult Drosophila melanogaster connectomes. A prior-knowledge-guided feature selection method and its application to biomarker identification of schizophrenia. Network control theory applied to the human connectome: A study on variability and discriminability of fMRI connectomic features under normal and defective sensorineural conditions. Revealing brain network dynamics during the emotional state of suspense using TDA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1