S. Yang, Debiao Meng, Yipeng Guo, P. Nie, Abilio M.P. de Jesus
{"title":"A reliability-based design and optimization strategy using a novel MPP searching method for maritime engineering structures","authors":"S. Yang, Debiao Meng, Yipeng Guo, P. Nie, Abilio M.P. de Jesus","doi":"10.1108/ijsi-06-2023-0049","DOIUrl":null,"url":null,"abstract":"PurposeIn order to solve the problems faced by First Order Reliability Method (FORM) and First Order Saddlepoint Approximation (FOSA) in structural reliability optimization, this paper aims to propose a new Reliability-based Design Optimization (RBDO) strategy for offshore engineering structures based on Original Probabilistic Model (OPM) decoupling strategy. The application of this innovative technique to other maritime structures has the potential to substantially improve their design process by optimizing cost and enhancing structural reliability.Design/methodology/approachIn the strategy proposed by this paper, sequential optimization and reliability assessment method and surrogate model are used to improve the efficiency for solving RBDO. The strategy is applied to the analysis of two marine engineering structure cases of ship cargo hold structure and frame ring of underwater skirt pile gripper. The effectiveness of the method is proved by comparing the original design and the optimized results.FindingsIn this paper, the proposed new RBDO strategy is used to optimize the design of the ship cargo hold structure and the frame ring of the underwater skirt pile gripper. According to the results obtained, compared with the original design, the structure of optimization design has better reliability and stability, and reduces the risk of failure. This optimization can also better balance the relationship between performance and cost. Therefore, it is recommended for related RBDO problems in the field of marine engineering.Originality/valueIn view of the limitations of FORM and FOSA that may produce multiple MPPs for a single performance function, the new RBDO strategy proposed in this study provides valuable insights and robust methods for the optimization design of offshore engineering structures. It emphasizes the importance of combining advanced MPP search technology and integrating SORA and surrogate models to achieve more economical and reliable design.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijsi-06-2023-0049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeIn order to solve the problems faced by First Order Reliability Method (FORM) and First Order Saddlepoint Approximation (FOSA) in structural reliability optimization, this paper aims to propose a new Reliability-based Design Optimization (RBDO) strategy for offshore engineering structures based on Original Probabilistic Model (OPM) decoupling strategy. The application of this innovative technique to other maritime structures has the potential to substantially improve their design process by optimizing cost and enhancing structural reliability.Design/methodology/approachIn the strategy proposed by this paper, sequential optimization and reliability assessment method and surrogate model are used to improve the efficiency for solving RBDO. The strategy is applied to the analysis of two marine engineering structure cases of ship cargo hold structure and frame ring of underwater skirt pile gripper. The effectiveness of the method is proved by comparing the original design and the optimized results.FindingsIn this paper, the proposed new RBDO strategy is used to optimize the design of the ship cargo hold structure and the frame ring of the underwater skirt pile gripper. According to the results obtained, compared with the original design, the structure of optimization design has better reliability and stability, and reduces the risk of failure. This optimization can also better balance the relationship between performance and cost. Therefore, it is recommended for related RBDO problems in the field of marine engineering.Originality/valueIn view of the limitations of FORM and FOSA that may produce multiple MPPs for a single performance function, the new RBDO strategy proposed in this study provides valuable insights and robust methods for the optimization design of offshore engineering structures. It emphasizes the importance of combining advanced MPP search technology and integrating SORA and surrogate models to achieve more economical and reliable design.