Threshold-Based Segmentation for Landmark Detection Using CBCT Images

IF 1.7 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Online and Biomedical Engineering Pub Date : 2023-08-01 DOI:10.3991/ijoe.v19i10.39489
M. Ed-Dhahraouy, Hicham Riri, M. Ezzahmouly, A. Elmoutaouakkil, Farid Bourzgui, H. El Byad
{"title":"Threshold-Based Segmentation for Landmark Detection Using CBCT Images","authors":"M. Ed-Dhahraouy, Hicham Riri, M. Ezzahmouly, A. Elmoutaouakkil, Farid Bourzgui, H. El Byad","doi":"10.3991/ijoe.v19i10.39489","DOIUrl":null,"url":null,"abstract":"The aim of this study is to examine the influence of threshold-based segmentation on the mean error of automatic landmark detection in 3D CBCT images. A GUI was developed for radiologists, allowing manual landmark identification and visualization of CBCT images. After a threshold-based segmentation, a semi-automatic algorithm for landmark detection was designed using the anatomic definition of each landmark. A step of 50 Hounsfield units was used for threshold variation to assess the detection error. 5 CBCT images were used to validate the proposed approach. The measurement of error detection for one patient was influenced by the threshold variation. For this patient, the error changed from 1.49 mm to 10.32 mm at a low threshold value, while for another patient, the error changed from 1.96 mm to 12.28 mm at high a threshold value. In a CBCT scanner, the choice of threshold value for segmentation can be an important factor in causing error in measurements.","PeriodicalId":36900,"journal":{"name":"International Journal of Online and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v19i10.39489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study is to examine the influence of threshold-based segmentation on the mean error of automatic landmark detection in 3D CBCT images. A GUI was developed for radiologists, allowing manual landmark identification and visualization of CBCT images. After a threshold-based segmentation, a semi-automatic algorithm for landmark detection was designed using the anatomic definition of each landmark. A step of 50 Hounsfield units was used for threshold variation to assess the detection error. 5 CBCT images were used to validate the proposed approach. The measurement of error detection for one patient was influenced by the threshold variation. For this patient, the error changed from 1.49 mm to 10.32 mm at a low threshold value, while for another patient, the error changed from 1.96 mm to 12.28 mm at high a threshold value. In a CBCT scanner, the choice of threshold value for segmentation can be an important factor in causing error in measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于阈值分割的CBCT图像地标检测
本研究的目的是检验基于阈值的分割对三维CBCT图像中自动地标检测平均误差的影响。为放射科医生开发了一个GUI,允许手动识别和可视化CBCT图像。在基于阈值的分割之后,利用每个地标的解剖定义设计了一种用于地标检测的半自动算法。将50个Hounsfield单位的步长用于阈值变化以评估检测误差。使用5张CBCT图像来验证所提出的方法。一名患者的错误检测测量受到阈值变化的影响。对于该患者,在低阈值时,误差从1.49mm变为10.32mm,而对于另一名患者,在高阈值时,错误从1.96mm变为12.28mm。在CBCT扫描仪中,分割阈值的选择可能是导致测量误差的重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
46.20%
发文量
143
审稿时长
12 weeks
期刊最新文献
Modification of an IMU Based System for Analyzing Hand Kinematics During Activities of Daily Living 3D Pre-Processing Algorithm for MRI Images of Different Stages of AD Segmentation of Retinal Images Using Improved Segmentation Network, MesU-Net Recent Biomaterial Developments for Bone Tissue Engineering and Potential Clinical Application: Narrative Review of the Literature Brain Tumor Localization Using N-Cut
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1