Y. Li, Gui-Mei Dong, Ji-lin Dong, Yingying Zhu, Ruiling Shen
{"title":"The application of UVC light-emitting diodes irradiation for decontamination in fresh Tartary buckwheat noodles","authors":"Y. Li, Gui-Mei Dong, Ji-lin Dong, Yingying Zhu, Ruiling Shen","doi":"10.1515/ijfe-2022-0189","DOIUrl":null,"url":null,"abstract":"Abstract Fresh noodles are easily to deterioration and contamination by microorganisms, improving its quality retention remains challenging. This study shows the potential of Ultraviolet C light-emitting diodes (UVC-LEDs, 275 nm) for the inactivation of Bacillus subtilis or Staphylococcus aureus inoculated on Tartary buckwheat fresh Tartary buckwheat noodles (FTBN) and as well as the inactivation of natural microbiota and quality of FTBN treated with UVC-LEDs during storage at 25 °C. The results showed that within a certain irradiation range of UVC-LEDs (0–1200 mJ/cm2), B. subtilis and S. aureus inoculated with FTBN would have deactivation and the dosage-dependent manner (P < 0.05). The initial total plate count of FTBN treated with UVC-LEDs was significantly reduced (P < 0.05) and shelf life was extended to 3 days. Changes of the pH, color, water distribution, cooking characterisitcs, and texture properties of FTBN treated with UVC-LEDs were delayed during storage. Based on these advantages, UVC-LEDs has good sterilization performance and improves the shelf life of noodles.","PeriodicalId":13976,"journal":{"name":"International Journal of Food Engineering","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1515/ijfe-2022-0189","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Fresh noodles are easily to deterioration and contamination by microorganisms, improving its quality retention remains challenging. This study shows the potential of Ultraviolet C light-emitting diodes (UVC-LEDs, 275 nm) for the inactivation of Bacillus subtilis or Staphylococcus aureus inoculated on Tartary buckwheat fresh Tartary buckwheat noodles (FTBN) and as well as the inactivation of natural microbiota and quality of FTBN treated with UVC-LEDs during storage at 25 °C. The results showed that within a certain irradiation range of UVC-LEDs (0–1200 mJ/cm2), B. subtilis and S. aureus inoculated with FTBN would have deactivation and the dosage-dependent manner (P < 0.05). The initial total plate count of FTBN treated with UVC-LEDs was significantly reduced (P < 0.05) and shelf life was extended to 3 days. Changes of the pH, color, water distribution, cooking characterisitcs, and texture properties of FTBN treated with UVC-LEDs were delayed during storage. Based on these advantages, UVC-LEDs has good sterilization performance and improves the shelf life of noodles.
期刊介绍:
International Journal of Food Engineering is devoted to engineering disciplines related to processing foods. The areas of interest include heat, mass transfer and fluid flow in food processing; food microstructure development and characterization; application of artificial intelligence in food engineering research and in industry; food biotechnology; and mathematical modeling and software development for food processing purposes. Authors and editors come from top engineering programs around the world: the U.S., Canada, the U.K., and Western Europe, but also South America, Asia, Africa, and the Middle East.