Constrained Density Peak Clustering

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Data Warehousing and Mining Pub Date : 2023-08-25 DOI:10.4018/ijdwm.328776
Viet-Thang Vu, T. T. Q. Bui, Tien Loi Nguyen, Doan-Vinh Tran, Quan Hong, V. Vu, S. Avdoshin
{"title":"Constrained Density Peak Clustering","authors":"Viet-Thang Vu, T. T. Q. Bui, Tien Loi Nguyen, Doan-Vinh Tran, Quan Hong, V. Vu, S. Avdoshin","doi":"10.4018/ijdwm.328776","DOIUrl":null,"url":null,"abstract":"Clustering is a commonly used tool for discovering knowledge in data mining. Density peak clustering (DPC) has recently gained attention for its ability to detect clusters with various shapes and noise, using just one parameter. DPC has shown advantages over other methods, such as DBSCAN and K-means, but it struggles with datasets that have both high and low-density clusters. To overcome this limitation, the paper introduces a new semi-supervised DPC method that improves clustering results with a small set of constraints expressed as must-link and cannot-link. The proposed method combines constraints and a k-nearest neighbor graph to filter out peaks and find the center for each cluster. Constraints are also used to support label assignment during the clustering procedure. The efficacy of this method is demonstrated through experiments on well-known data sets from UCI and benchmarked against contemporary semi-supervised clustering techniques.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.328776","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering is a commonly used tool for discovering knowledge in data mining. Density peak clustering (DPC) has recently gained attention for its ability to detect clusters with various shapes and noise, using just one parameter. DPC has shown advantages over other methods, such as DBSCAN and K-means, but it struggles with datasets that have both high and low-density clusters. To overcome this limitation, the paper introduces a new semi-supervised DPC method that improves clustering results with a small set of constraints expressed as must-link and cannot-link. The proposed method combines constraints and a k-nearest neighbor graph to filter out peaks and find the center for each cluster. Constraints are also used to support label assignment during the clustering procedure. The efficacy of this method is demonstrated through experiments on well-known data sets from UCI and benchmarked against contemporary semi-supervised clustering techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
约束密度峰值聚类
聚类是数据挖掘中发现知识的常用工具。密度峰聚类(DPC)最近因其仅使用一个参数即可检测具有各种形状和噪声的聚类而受到关注。DPC已经显示出比其他方法(如DBSCAN和K-means)的优势,但是它在处理同时具有高密度和低密度集群的数据集时遇到了困难。为了克服这一限制,本文引入了一种新的半监督DPC方法,该方法通过将一小组约束表示为必须链接和不能链接来改善聚类结果。该方法结合约束和k近邻图来过滤峰值并找到每个聚类的中心。约束还用于支持聚类过程中的标签分配。该方法的有效性通过来自UCI的知名数据集的实验来证明,并与当代半监督聚类技术进行了基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Data Warehousing and Mining
International Journal of Data Warehousing and Mining COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving
期刊最新文献
Fishing Vessel Type Recognition Based on Semantic Feature Vector Optimizing Cadet Squad Organizational Satisfaction by Integrating Leadership Factor Data Mining and Integer Programming Hybrid Inductive Graph Method for Matrix Completion A Fuzzy Portfolio Model With Cardinality Constraints Based on Differential Evolution Algorithms Dynamic Research on Youth Thought, Behavior, and Growth Law Based on Deep Learning Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1