Microstructure formation and mechanical properties of isothermally-solidified titanium alloy joints brazed by a Ti – Zr – Cu – Ni – Be amorphous alloy foil
{"title":"Microstructure formation and mechanical properties of isothermally-solidified titanium alloy joints brazed by a Ti – Zr – Cu – Ni – Be amorphous alloy foil","authors":"P. Morokhov, A. Ivannikov, N. Popov, O. Sevryukov","doi":"10.17580/NFM.2020.02.08","DOIUrl":null,"url":null,"abstract":"Two titanium alloys, OT4 and VT6-c, with a pseudo-α and α + β structure, respectively, were brazed using transient liquid phase (TLP) bonding. To obtain high strength joints an amorphous foil (Ti – 12Zr – 22Cu – 12Ni – 1.5 Be – 0.8V wt.%) was used. Based on microstructural studies and analysis of two- and three-component phase diagrams, the mechanism of the microstructural evolution of the brazed seams of titanium alloys OT4 and VT6-c is described. Brazing at 800 °C with exposure for 0.5 h leads to the formation of a heterogeneous structure consisting of Widmanstätten, eutectoid, and eutectic. Brazed OT4 and VT6-c joints with the presence of a eutectic layer in the centre show low mechanical properties; their ultimate strength lies in a range from 200 to 550 MPa. Increasing the brazing temperature to 840 °C and the exposure time to 2 h, leads to the disappearance of the brittle eutectic component from the seam. This structure typically consists of Widmanstätten with a small number of eutectoid fractions. Joints with the absence of a eutectic layer in the brazed seam demonstrate a strength equal to the base titanium alloys. In this case, failure occurs in the base metal. For brazed samples from the OT4 alloy, the tensile strength value is σb = 750 ± 3 MPa, and for samples from VT6-c, σb = 905 ± 3 MPa. This work was supported by Competitiveness Growth Programme of the Federal Autonomous Educational Institution of Higher Education National Research Nuclear University MEPhI (Moscow Engineering Physics Institute).","PeriodicalId":19653,"journal":{"name":"Nonferrous Metals","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonferrous Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17580/NFM.2020.02.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1
Abstract
Two titanium alloys, OT4 and VT6-c, with a pseudo-α and α + β structure, respectively, were brazed using transient liquid phase (TLP) bonding. To obtain high strength joints an amorphous foil (Ti – 12Zr – 22Cu – 12Ni – 1.5 Be – 0.8V wt.%) was used. Based on microstructural studies and analysis of two- and three-component phase diagrams, the mechanism of the microstructural evolution of the brazed seams of titanium alloys OT4 and VT6-c is described. Brazing at 800 °C with exposure for 0.5 h leads to the formation of a heterogeneous structure consisting of Widmanstätten, eutectoid, and eutectic. Brazed OT4 and VT6-c joints with the presence of a eutectic layer in the centre show low mechanical properties; their ultimate strength lies in a range from 200 to 550 MPa. Increasing the brazing temperature to 840 °C and the exposure time to 2 h, leads to the disappearance of the brittle eutectic component from the seam. This structure typically consists of Widmanstätten with a small number of eutectoid fractions. Joints with the absence of a eutectic layer in the brazed seam demonstrate a strength equal to the base titanium alloys. In this case, failure occurs in the base metal. For brazed samples from the OT4 alloy, the tensile strength value is σb = 750 ± 3 MPa, and for samples from VT6-c, σb = 905 ± 3 MPa. This work was supported by Competitiveness Growth Programme of the Federal Autonomous Educational Institution of Higher Education National Research Nuclear University MEPhI (Moscow Engineering Physics Institute).
期刊介绍:
Its thematic plan covers all directions of scientific and technical development in non-ferrous metallurgy. The main journal sections include scientific-technical papers on heavy and light non-ferrous metals, noble metals and alloys, rare and rare earth metals, carbon materials, composites and multi-functional coatings, radioactive elements, nanostructured metals and materials, metal forming, automation etc. Theoretical and practical problems of ore mining and mineral processing, production and processing of non-ferrous metals, complex usage of ores, economics and production management, automation of metallurgical processes are widely observed in this journal. "Non-ferrous Metals" journal publishes the papers of well-known scientists and leading metallurgists, elucidates important scientific-technical problems of development of concentrating and metallurgical enterprises, scientific-research institutes and universities in the field of non-ferrous metallurgy, presents new scientific directions and technical innovations in this area. The readers can find in this journal both the articles with applied investigations and with results of fundamental researches that make the base for new technical developments. Publishing according to the approach APC (Article processing charge).