{"title":"Geometrical Model of Free Skin Graft for the Optimization of Glans Reconstruction after Partial Penectomy","authors":"N. Fernández, M. Medina, H. Wessells, Jaime Pérez","doi":"10.1055/s-0041-1731771","DOIUrl":null,"url":null,"abstract":"Abstract Introduction and Objective The management of penile carcinoma is very disabling and mutilating, bur early treatment can be curative. Our group systematically performs oncological management with immediate penile reconstruction and preservation of the organ (partial penectomy, resurfacing, or glansectomy) when feasible. Due to the low incidence of penile carcinoma, it is difficult to achieve experience in penile reconstruction using free grafts in a standardized and reproducible way. Therefore, we herein present the results of the use of an inanimate model to identify the most efficient geometric way to procure and apply a free skin graft to reconstruct the penis. Methods A preclinical inanimate model of the penis was developed to simulate the surgical reconstruction using a free skin graft. Six different geometric skin-graft models were created and tested. For each of them, we measured graft's surface area as well as the discarded surface after placing the graft on the penis for reconstruction. We also measured the amount of suture lines required for reconstruction. All of these measurements in the six different models were compared. Results Based on the six models, we identified that the longitude of the graft must measure the same as the maximum perimeter of the glans in order to have a square that enables the complete coverage of the penile defect. The total graft area for the first 4 models was of 40 cm2; for models 5 and 6, it was of 60 cm2. The average discarded area of the graft was of 18.135 cm2 (range: 12 cm2 to 30 cm2). Models 4 years 6 were the ones with the least discarded tissue: 12 cm2. The average amount of suture lines to secure the different model grafts was 7.3 (range: 5 to 12). The models that required the least amount of suture lines were number 1 and 4, with a total of 5 suture lines. Conclusions The double trapezoid is the most efficient model to reconstruct the glans after organ-sparing oncological management. Our results contribute to establish a more standardized and predictable technique to reconstruct the penis.","PeriodicalId":38070,"journal":{"name":"Urologia Colombiana","volume":"30 1","pages":"e189 - e193"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urologia Colombiana","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0041-1731771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Introduction and Objective The management of penile carcinoma is very disabling and mutilating, bur early treatment can be curative. Our group systematically performs oncological management with immediate penile reconstruction and preservation of the organ (partial penectomy, resurfacing, or glansectomy) when feasible. Due to the low incidence of penile carcinoma, it is difficult to achieve experience in penile reconstruction using free grafts in a standardized and reproducible way. Therefore, we herein present the results of the use of an inanimate model to identify the most efficient geometric way to procure and apply a free skin graft to reconstruct the penis. Methods A preclinical inanimate model of the penis was developed to simulate the surgical reconstruction using a free skin graft. Six different geometric skin-graft models were created and tested. For each of them, we measured graft's surface area as well as the discarded surface after placing the graft on the penis for reconstruction. We also measured the amount of suture lines required for reconstruction. All of these measurements in the six different models were compared. Results Based on the six models, we identified that the longitude of the graft must measure the same as the maximum perimeter of the glans in order to have a square that enables the complete coverage of the penile defect. The total graft area for the first 4 models was of 40 cm2; for models 5 and 6, it was of 60 cm2. The average discarded area of the graft was of 18.135 cm2 (range: 12 cm2 to 30 cm2). Models 4 years 6 were the ones with the least discarded tissue: 12 cm2. The average amount of suture lines to secure the different model grafts was 7.3 (range: 5 to 12). The models that required the least amount of suture lines were number 1 and 4, with a total of 5 suture lines. Conclusions The double trapezoid is the most efficient model to reconstruct the glans after organ-sparing oncological management. Our results contribute to establish a more standardized and predictable technique to reconstruct the penis.
期刊介绍:
Urología Colombiana is the serial scientific publication of the Colombian Society of Urology at intervals of three issues per year, in which the results of original research, review articles and other research designs that contribute to increase knowledge in medicine and particularly in the specialty of urology.