GHz operation of a quantum point contact using stub-impedance matching circuit

Q2 Physics and Astronomy Physics Open Pub Date : 2023-09-01 DOI:10.1016/j.physo.2023.100181
Anusha Shanmugam , Prasanta Kumbhakar , Harikrishnan Sundaresan , Annu Anns Sunny , J.L. Reno , Madhu Thalakulam
{"title":"GHz operation of a quantum point contact using stub-impedance matching circuit","authors":"Anusha Shanmugam ,&nbsp;Prasanta Kumbhakar ,&nbsp;Harikrishnan Sundaresan ,&nbsp;Annu Anns Sunny ,&nbsp;J.L. Reno ,&nbsp;Madhu Thalakulam","doi":"10.1016/j.physo.2023.100181","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum point contacts (QPC) are the building blocks of quantum dot qubits and semiconducting quantum electrical metrology circuits. QPCs also make highly sensitive electrical amplifiers with the potential to operate in the quantum-limited regime. Though the inherent operational bandwidth of QPCs can eclipse the THz regime, the impedance mismatch with the external circuitry limits the operational frequency to a few kHz. Lumped-element impedance-matching circuits are successful only up to a few hundreds of MHz in frequency. QPCs are characterised by a complex impedance consisting of quantized resistance, capacitance, and inductance elements. Characterising the complex admittance at higher frequencies and understanding the coupling of QPC to other circuit elements and electromagnetic environments will provide valuable insight into its sensing and backaction properties. In this work, we couple a QPC galvanically to a superconducting stub tuner impedance matching circuit realised in a coplanar waveguide architecture to enhance the operation frequency into the GHz regime and investigate the electrical amplification and complex admittance characteristics. The device, operating at ∼ <span><math><mn>1</mn><mo>.</mo><mn>96</mn><mspace></mspace><mi>G</mi><mi>H</mi><mi>z</mi><mo>,</mo></math></span> exhibits a conductance sensitivity of <span><math><mrow><mn>2.92</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup><msup><mrow><mo>(</mo><mi>e</mi></mrow><mn>2</mn></msup><mo>/</mo><mi>h</mi><mo>)</mo><mo>/</mo><msqrt><mrow><mi>H</mi><mi>z</mi></mrow></msqrt></mrow></math></span> with a bandwidth of <span><math><mrow><mn>13</mn><mspace></mspace><mi>M</mi><mi>H</mi><mi>z</mi></mrow></math></span>. Besides, the RF reflected power unambiguously reveals the complex admittance characteristics of the QPC, shining more light on the behaviour of quantum tunnel junctions at higher operational frequencies.</p></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"17 ","pages":"Article 100181"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032623000467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum point contacts (QPC) are the building blocks of quantum dot qubits and semiconducting quantum electrical metrology circuits. QPCs also make highly sensitive electrical amplifiers with the potential to operate in the quantum-limited regime. Though the inherent operational bandwidth of QPCs can eclipse the THz regime, the impedance mismatch with the external circuitry limits the operational frequency to a few kHz. Lumped-element impedance-matching circuits are successful only up to a few hundreds of MHz in frequency. QPCs are characterised by a complex impedance consisting of quantized resistance, capacitance, and inductance elements. Characterising the complex admittance at higher frequencies and understanding the coupling of QPC to other circuit elements and electromagnetic environments will provide valuable insight into its sensing and backaction properties. In this work, we couple a QPC galvanically to a superconducting stub tuner impedance matching circuit realised in a coplanar waveguide architecture to enhance the operation frequency into the GHz regime and investigate the electrical amplification and complex admittance characteristics. The device, operating at ∼ 1.96GHz, exhibits a conductance sensitivity of 2.92×105(e2/h)/Hz with a bandwidth of 13MHz. Besides, the RF reflected power unambiguously reveals the complex admittance characteristics of the QPC, shining more light on the behaviour of quantum tunnel junctions at higher operational frequencies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用存根阻抗匹配电路的量子点接触的GHz操作
量子点触点(QPC)是量子点量子比特和半导体量子电计量电路的基本组成部分。量子量子计算机还可以制造出高灵敏度的电放大器,具有在量子受限状态下工作的潜力。虽然qpc的固有工作带宽可以掩盖太赫兹区,但与外部电路的阻抗不匹配将工作频率限制在几kHz。集总元件阻抗匹配电路只有在几百兆赫的频率范围内才能成功。qpc的特点是由量子化的电阻、电容和电感元件组成的复杂阻抗。表征高频下的复杂导纳,了解QPC与其他电路元件和电磁环境的耦合,将为其传感和反作用特性提供有价值的见解。在这项工作中,我们将QPC电偶耦合到在共面波导结构中实现的超导短段调谐器阻抗匹配电路中,以提高工作频率到GHz范围,并研究了电放大和复杂导纳特性。该器件工作频率为~ 1.96GHz,电导灵敏度为2.92×10−5(e2/h)/Hz,带宽为13MHz。此外,射频反射功率明确地揭示了QPC的复杂导纳特性,更多地揭示了更高工作频率下量子隧道结的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics Open
Physics Open Physics and Astronomy-Physics and Astronomy (all)
CiteScore
3.20
自引率
0.00%
发文量
19
审稿时长
9 weeks
期刊最新文献
Bifurcation and multi-stability analysis of microwave engineering systems: Insights from the Burger–Fisher equation New definitions of the effective nuclear charge and its application to estimate the matrix element ⟨n,l|rβ|n′,l′⟩ Influence of Nd3+ on structural, electrical and magnetic properties of Ni-Cd nanoferrites Diffusion across a concentration step: Strongly nonmonotonic evolution into thermodynamic equilibrium Characterizing stochastic solitons behavior in (3+1)-dimensional Schrödinger equation with Cubic–Quintic nonlinearity using improved modified extended tanh-function scheme
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1