Wanzhi MENG, Zhuorui PAN, Sixin WEN, Pan QIN, Ximing SUN
{"title":"Aeroengine thrust estimation and embedded verification based on improved temporal convolutional network","authors":"Wanzhi MENG, Zhuorui PAN, Sixin WEN, Pan QIN, Ximing SUN","doi":"10.1016/j.cja.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Thrust estimation is a significant part of aeroengine thrust control systems. The traditional estimation methods are either low in accuracy or large in computation. To further improve the estimation effect, a thrust estimator based on Multi-layer Residual Temporal Convolutional Network (M-RTCN) is proposed. To solve the problem of dead Rectified Linear Unit (ReLU), the proposed method uses the Gaussian Error Linear Unit (GELU) activation function instead of ReLU in residual block. Then the overall architecture of the multi-layer convolutional network is adjusted by using residual connections, so that the network thrust estimation effect and memory consumption are further improved. Moreover, the comparison with seven other methods shows that the proposed method has the advantages of higher estimation accuracy and faster convergence speed. Furthermore, six neural network models are deployed in the embedded controller of the micro-turbojet engine. The Hardware-in-the-Loop (HIL) testing results demonstrate the superiority of M-RTCN in terms of estimation accuracy, memory occupation and running time. Finally, an ignition verification is conducted to confirm the expected thrust estimation and real-time performance.</p></div>","PeriodicalId":55631,"journal":{"name":"Chinese Journal of Aeronautics","volume":"37 1","pages":"Pages 106-117"},"PeriodicalIF":5.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1000936123003059/pdfft?md5=4b260ee034d01ba5ce5d294679f15fe6&pid=1-s2.0-S1000936123003059-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Aeronautics","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000936123003059","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Thrust estimation is a significant part of aeroengine thrust control systems. The traditional estimation methods are either low in accuracy or large in computation. To further improve the estimation effect, a thrust estimator based on Multi-layer Residual Temporal Convolutional Network (M-RTCN) is proposed. To solve the problem of dead Rectified Linear Unit (ReLU), the proposed method uses the Gaussian Error Linear Unit (GELU) activation function instead of ReLU in residual block. Then the overall architecture of the multi-layer convolutional network is adjusted by using residual connections, so that the network thrust estimation effect and memory consumption are further improved. Moreover, the comparison with seven other methods shows that the proposed method has the advantages of higher estimation accuracy and faster convergence speed. Furthermore, six neural network models are deployed in the embedded controller of the micro-turbojet engine. The Hardware-in-the-Loop (HIL) testing results demonstrate the superiority of M-RTCN in terms of estimation accuracy, memory occupation and running time. Finally, an ignition verification is conducted to confirm the expected thrust estimation and real-time performance.
期刊介绍:
Chinese Journal of Aeronautics (CJA) is an open access, peer-reviewed international journal covering all aspects of aerospace engineering. The Journal reports the scientific and technological achievements and frontiers in aeronautic engineering and astronautic engineering, in both theory and practice, such as theoretical research articles, experiment ones, research notes, comprehensive reviews, technological briefs and other reports on the latest developments and everything related to the fields of aeronautics and astronautics, as well as those ground equipment concerned.