Microwave Synthesis of Ce/BiVO 4 Nanocomposites Photocatalyst and Their Photocatalytic Properties

Ming-Huang Tuo, Shuibin Yang, Xuehong Liao
{"title":"Microwave Synthesis of Ce/BiVO 4 Nanocomposites Photocatalyst and Their Photocatalytic Properties","authors":"Ming-Huang Tuo, Shuibin Yang, Xuehong Liao","doi":"10.4236/ojcm.2018.82006","DOIUrl":null,"url":null,"abstract":"Ce/BiVO4 nanocomposites photocatalyst was synthesized by direct feeding microwave synthesis method, using bismuth nitrate (Bi (NO3)3·5H2O), cerium nitrate hexahydrate (Ce (NO3)3·6H2O) and ammonium metavanadate (NH4VO3) as raw material and sodium dodecyl sulfate (SDS) as surfactant. The X-ray diffractometer (XRD) and the scanning electron microscopy (SEM) technology were used to characterize the Ce/BiVO4 nanocomposites. We investigated the photocatalytic activity of the as-prepared photocatalyst, and methyl orange was used as organic pollutant. The results show that the Ce/BiVO4 nanocomposite was a good photocatalyst under visible light. In 100 ml of 5 mg/L methylene orange solution, when the catalyst calcined at 673 K was 0.1 g, hydrogen peroxide was 0.5 ml, pH was 2.0, and the degradation ratio of catalyst for methylene orange reached 90.26% within 70 min.","PeriodicalId":57868,"journal":{"name":"复合材料期刊(英文)","volume":"08 1","pages":"68-74"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"复合材料期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/ojcm.2018.82006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ce/BiVO4 nanocomposites photocatalyst was synthesized by direct feeding microwave synthesis method, using bismuth nitrate (Bi (NO3)3·5H2O), cerium nitrate hexahydrate (Ce (NO3)3·6H2O) and ammonium metavanadate (NH4VO3) as raw material and sodium dodecyl sulfate (SDS) as surfactant. The X-ray diffractometer (XRD) and the scanning electron microscopy (SEM) technology were used to characterize the Ce/BiVO4 nanocomposites. We investigated the photocatalytic activity of the as-prepared photocatalyst, and methyl orange was used as organic pollutant. The results show that the Ce/BiVO4 nanocomposite was a good photocatalyst under visible light. In 100 ml of 5 mg/L methylene orange solution, when the catalyst calcined at 673 K was 0.1 g, hydrogen peroxide was 0.5 ml, pH was 2.0, and the degradation ratio of catalyst for methylene orange reached 90.26% within 70 min.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微波合成Ce/BiVO4纳米复合光催化剂及其光催化性能
以硝酸铋(Bi(NO3)3·5H2O)、六水合硝酸铈(Ce(NO4)3·6H2O)和偏钒酸铵(NH4VO3)为原料,十二烷基硫酸钠(SDS)为表面活性剂,采用微波直接进料法合成了Ce/BiVO4纳米复合光催化剂。采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)技术对Ce/BiVO4纳米复合材料进行了表征。以甲基橙为有机污染物,研究了所制备的光催化剂的光催化活性。结果表明,Ce/BiVO4纳米复合材料在可见光下是一种良好的光催化剂。在100毫升5毫克/升的甲基橙溶液中,当催化剂在673 K下煅烧为0.1克,过氧化氢为0.5毫升,pH为2.0时,催化剂对甲基橙的降解率在70分钟内达到90.26%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
127
期刊最新文献
A Decisive Study on Dielectric Response of Bi2O3/Polystyrene & Bi2O3/PVDF Composite as Flexible Electrodes for Energy Storage Influence of Plastic and Coconut Shell (Cocos nucifera L.) on the Physico-Mechanical Properties of the 8/6 Composite Rafter The Equilibrium Moisture Content of Five Lesser Utilized Species of Ghana Contrasted with Three European Species Development and Evaluation of the Mechanical Properties of Coconut Fibre Reinforced Low Density Polyethylene Composite Influence of the Age of Bamboo Culm and Its Vertical Position on the Technological Properties of Bamboo Fibers: A Case of Bambusa vulgaris Species from Cameroonian Culture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1