Klasifikasi Rambu Lalu Lintas Menggunakan Ekstraksi Ciri Wavelet Dan Jarak Euclidean

Vincentius Abdi Gunawan, Ignatia Imelda Fitriani, L. Putra
{"title":"Klasifikasi Rambu Lalu Lintas Menggunakan Ekstraksi Ciri Wavelet Dan Jarak Euclidean","authors":"Vincentius Abdi Gunawan, Ignatia Imelda Fitriani, L. Putra","doi":"10.31961/ELTIKOM.V3I1.105","DOIUrl":null,"url":null,"abstract":"Driving is one of the human activities in which daily life is often done.  Driving can be done by land, air, and sea.  Human mobility in driving is very high on land routes using various means of transportation.  For the sake of smooth driving, roads are often equipped with traffic signs in each traffic area.  Traffic signs are a means for road users to provide information and guidance for motorists about the situation in the surrounding area.  The number of motorists who lack awareness of the knowledge of reading traffic signs is one of the biggest causes of accidents in Indonesia.  So that a system is needed that can help in recognizing traffic signs, especially prohibited signs.  The system designed using Haar Wavelet feature extraction and Euclidean distance as a classification.  From the data that has been tested, the level of recognition in reading traffic signs is prohibited by 92%.","PeriodicalId":33096,"journal":{"name":"Jurnal ELTIKOM Jurnal Teknik Elektro Teknologi Informasi dan Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal ELTIKOM Jurnal Teknik Elektro Teknologi Informasi dan Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31961/ELTIKOM.V3I1.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Driving is one of the human activities in which daily life is often done.  Driving can be done by land, air, and sea.  Human mobility in driving is very high on land routes using various means of transportation.  For the sake of smooth driving, roads are often equipped with traffic signs in each traffic area.  Traffic signs are a means for road users to provide information and guidance for motorists about the situation in the surrounding area.  The number of motorists who lack awareness of the knowledge of reading traffic signs is one of the biggest causes of accidents in Indonesia.  So that a system is needed that can help in recognizing traffic signs, especially prohibited signs.  The system designed using Haar Wavelet feature extraction and Euclidean distance as a classification.  From the data that has been tested, the level of recognition in reading traffic signs is prohibited by 92%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波和欧氏距离特性提取的亚麻分类晚线
驾驶是人类日常生活中经常进行的活动之一。驾驶可以通过陆地、空中和海上进行。人类驾驶的机动性在陆地道路上使用各种交通工具是非常高的。为了平稳行驶,道路上往往在每个交通区域设置交通标志。交通标志是道路使用者向驾驶人士提供有关周围情况的信息和指引的一种手段。缺乏阅读交通标志知识意识的驾车者的数量是印度尼西亚事故的最大原因之一。所以需要一个系统来帮助识别交通标志,尤其是禁止通行的标志。系统设计采用Haar小波特征提取和欧氏距离作为分类方法。从已经测试的数据来看,阅读交通标志的识别水平被禁止了92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
6 weeks
期刊最新文献
Internet of Things- Based Automatic Feeder and Monitoring of Water Temperature, PH, and Salinity for Litopenaeus Vannamei Shrimp Smart Rice Box - The Prototype of Organic Rice Storage Anti-Rice Weevil for Food Security during Pandemic Customer Segmentation Based on Loyalty Level Using K-Means and LRFM Feature Selection in Retail Online Store Signature Identification using Digital Image Processing and Machine Learning Methods ANALISIS DAN PERBANDINGAN STEGANOGRAFI PADA MEDIA AUDIO DAN GAMBAR MENGGUNAKAN LSB DAN RC4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1