Aristotelis Leventidis, Laura Di Rocco, Wolfgang Gatterbauer, Renée J. Miller, Mirek Riedewald
{"title":"DomainNet: Homograph Detection and Understanding in Data Lake Disambiguation","authors":"Aristotelis Leventidis, Laura Di Rocco, Wolfgang Gatterbauer, Renée J. Miller, Mirek Riedewald","doi":"10.1145/3612919","DOIUrl":null,"url":null,"abstract":"Modern data lakes are heterogeneous in the vocabulary that is used to describe data. We study a problem of disambiguation in data lakes: How can we determine if a data value occurring more than once in the lake has different meanings and is therefore a homograph? While word and entity disambiguation have been well studied in computational linguistics, data management, and data science, we show that data lakes provide a new opportunity for disambiguation of data values, because tables implicitly define a massive network of interconnected values. We introduce DomainNet, which efficiently represents this network, and investigate to what extent it can be used to disambiguate values without requiring any supervision. DomainNet leverages network-centrality measures on a bipartite graph whose nodes represent data values and attributes to determine if a value is a homograph. A thorough experimental evaluation demonstrates that state-of-the-art techniques in domain discovery cannot be re-purposed to compete with our method. Specifically, using a domain discovery method to identify homographs achieves an F1-score of 0.38 versus 0.69 for DomainNet, which separates homographs well from data values that have a unique meaning. On a real data lake, our top-100 precision is 93%. Given a homograph, we also present a novel method for determining the number of meanings of the homograph and for assigning its data lake attributes to a meaning. We show the influence of homographs on two downstream tasks: entity-matching and domain discovery.","PeriodicalId":50915,"journal":{"name":"ACM Transactions on Database Systems","volume":" ","pages":"1 - 40"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3612919","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Modern data lakes are heterogeneous in the vocabulary that is used to describe data. We study a problem of disambiguation in data lakes: How can we determine if a data value occurring more than once in the lake has different meanings and is therefore a homograph? While word and entity disambiguation have been well studied in computational linguistics, data management, and data science, we show that data lakes provide a new opportunity for disambiguation of data values, because tables implicitly define a massive network of interconnected values. We introduce DomainNet, which efficiently represents this network, and investigate to what extent it can be used to disambiguate values without requiring any supervision. DomainNet leverages network-centrality measures on a bipartite graph whose nodes represent data values and attributes to determine if a value is a homograph. A thorough experimental evaluation demonstrates that state-of-the-art techniques in domain discovery cannot be re-purposed to compete with our method. Specifically, using a domain discovery method to identify homographs achieves an F1-score of 0.38 versus 0.69 for DomainNet, which separates homographs well from data values that have a unique meaning. On a real data lake, our top-100 precision is 93%. Given a homograph, we also present a novel method for determining the number of meanings of the homograph and for assigning its data lake attributes to a meaning. We show the influence of homographs on two downstream tasks: entity-matching and domain discovery.
期刊介绍:
Heavily used in both academic and corporate R&D settings, ACM Transactions on Database Systems (TODS) is a key publication for computer scientists working in data abstraction, data modeling, and designing data management systems. Topics include storage and retrieval, transaction management, distributed and federated databases, semantics of data, intelligent databases, and operations and algorithms relating to these areas. In this rapidly changing field, TODS provides insights into the thoughts of the best minds in database R&D.