Pedro M. Domingos, A. Jenny, David del Álamo, M. Mlodzik, H. Steller, B. Mollereau
{"title":"Regulation of Numb during planar cell polarity establishment in the Drosophila eye","authors":"Pedro M. Domingos, A. Jenny, David del Álamo, M. Mlodzik, H. Steller, B. Mollereau","doi":"10.1101/686840","DOIUrl":null,"url":null,"abstract":"The establishment of planar cell polarity (PCP) in the Drosophila eye requires correct specification of the R3/R4 pair of photoreceptor cells, determined by a Frizzled mediated signaling event that specifies R3 and induces Delta to activate Notch signaling in the neighboring cell, specifying it as R4. Here, we investigated the role of the Notch signaling negative regulator Numb in the specification of R3/R4 fates and PCP establishment in the Drosophila eye. We observed that Numb is transiently upregulated in R3 at the time of R3/R4 specification. This regulation of Numb levels in developing photoreceptors occurs at the post-transcriptional level and is dependent on Dishevelled, an effector of Frizzled signaling, and Lethal Giant Larva. We detected PCP defects in cells homozygous for numb15, but these defects were due to a loss of function mutation in fat (fatQ805*) being present in the numb15 chromosome. However, mosaic overexpression of Numb in R4 precursors (only) caused PCP defects and numb loss-of-function had a modifying effect on the defects found in a hypomorphic dishevelled mutation. Our results suggest that Numb levels are upregulated to reinforce the bias of Notch signaling activation in the R3/R4 pair, two post-mitotic cells that are not specified by asymmetric cell division.","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/686840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 2
Abstract
The establishment of planar cell polarity (PCP) in the Drosophila eye requires correct specification of the R3/R4 pair of photoreceptor cells, determined by a Frizzled mediated signaling event that specifies R3 and induces Delta to activate Notch signaling in the neighboring cell, specifying it as R4. Here, we investigated the role of the Notch signaling negative regulator Numb in the specification of R3/R4 fates and PCP establishment in the Drosophila eye. We observed that Numb is transiently upregulated in R3 at the time of R3/R4 specification. This regulation of Numb levels in developing photoreceptors occurs at the post-transcriptional level and is dependent on Dishevelled, an effector of Frizzled signaling, and Lethal Giant Larva. We detected PCP defects in cells homozygous for numb15, but these defects were due to a loss of function mutation in fat (fatQ805*) being present in the numb15 chromosome. However, mosaic overexpression of Numb in R4 precursors (only) caused PCP defects and numb loss-of-function had a modifying effect on the defects found in a hypomorphic dishevelled mutation. Our results suggest that Numb levels are upregulated to reinforce the bias of Notch signaling activation in the R3/R4 pair, two post-mitotic cells that are not specified by asymmetric cell division.
期刊介绍:
Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology.
Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology.
Areas of particular interest include:
Cell and tissue morphogenesis
Cell adhesion and migration
Cell shape and polarity
Biomechanics
Theoretical modelling of cell and developmental biology
Quantitative biology
Stem cell biology
Cell differentiation
Cell proliferation and cell death
Evo-Devo
Membrane traffic
Metabolic regulation
Organ and organoid development
Regeneration
Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.