Jiangtao Qiu , Lingyun Ji , Liangyu Zhu , Chuanjin Liu , Jinshuo Wang
{"title":"The June 2022 Khost earthquake in southeastern Afghanistan: A complicated shallow slip event revealed with InSAR","authors":"Jiangtao Qiu , Lingyun Ji , Liangyu Zhu , Chuanjin Liu , Jinshuo Wang","doi":"10.1016/j.geog.2023.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>On June 22, 2022, the <em>M</em>w6.2 earthquake in southeastern Afghanistan caused a severe disaster. We used the Sentinel-1A ascending and descending track images of the European Space Agency and interferometric synthetic aperture radar (InSAR) to obtain the coseismic surface deformation field of the earthquake, which showed that the earthquake caused complex ruptures of multiple faults and various types. Using the dislocation model of the elastic half-space, we determined the focal parameters and slip distribution on the fault plane of this event. The results reveal that: (1) the seismogenic fault of this event is an unknown fault on the northeastern edge of the Katawaz microblock; (2) The slip on the fault plane is mainly in the range of 0–8 km along the dip, with maximum slips about 2 m at a depth of 2 km, which projected on the surface is 69.44°E, 32.96°N. This event suggests that, similar to the Chaman, Ghazaband and other large faults, the faults inside the microblock also play an important role in adjusting for the collision stress between India and Europe.</p></div>","PeriodicalId":46398,"journal":{"name":"Geodesy and Geodynamics","volume":"14 6","pages":"Pages 559-565"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674984723000198/pdfft?md5=7e0691502e1d433d3dec83531960ba7e&pid=1-s2.0-S1674984723000198-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodesy and Geodynamics","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674984723000198","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
On June 22, 2022, the Mw6.2 earthquake in southeastern Afghanistan caused a severe disaster. We used the Sentinel-1A ascending and descending track images of the European Space Agency and interferometric synthetic aperture radar (InSAR) to obtain the coseismic surface deformation field of the earthquake, which showed that the earthquake caused complex ruptures of multiple faults and various types. Using the dislocation model of the elastic half-space, we determined the focal parameters and slip distribution on the fault plane of this event. The results reveal that: (1) the seismogenic fault of this event is an unknown fault on the northeastern edge of the Katawaz microblock; (2) The slip on the fault plane is mainly in the range of 0–8 km along the dip, with maximum slips about 2 m at a depth of 2 km, which projected on the surface is 69.44°E, 32.96°N. This event suggests that, similar to the Chaman, Ghazaband and other large faults, the faults inside the microblock also play an important role in adjusting for the collision stress between India and Europe.
期刊介绍:
Geodesy and Geodynamics launched in October, 2010, and is a bimonthly publication. It is sponsored jointly by Institute of Seismology, China Earthquake Administration, Science Press, and another six agencies. It is an international journal with a Chinese heart. Geodesy and Geodynamics is committed to the publication of quality scientific papers in English in the fields of geodesy and geodynamics from authors around the world. Its aim is to promote a combination between Geodesy and Geodynamics, deepen the application of Geodesy in the field of Geoscience and quicken worldwide fellows'' understanding on scientific research activity in China. It mainly publishes newest research achievements in the field of Geodesy, Geodynamics, Science of Disaster and so on. Aims and Scope: new theories and methods of geodesy; new results of monitoring and studying crustal movement and deformation by using geodetic theories and methods; new ways and achievements in earthquake-prediction investigation by using geodetic theories and methods; new results of crustal movement and deformation studies by using other geologic, hydrological, and geophysical theories and methods; new results of satellite gravity measurements; new development and results of space-to-ground observation technology.