Anna Kovalchuk, R. Mychasiuk, A. Muhammad, S. Hossain, Abhijit Ghose, C. Kirkby, E. Ghasroddashti, O. Kovalchuk, B. Kolb
{"title":"Complex housing partially mitigates low dose radiation-induced changes in brain and behavior in rats.","authors":"Anna Kovalchuk, R. Mychasiuk, A. Muhammad, S. Hossain, Abhijit Ghose, C. Kirkby, E. Ghasroddashti, O. Kovalchuk, B. Kolb","doi":"10.3233/RNN-211216","DOIUrl":null,"url":null,"abstract":"PURPOSE\nIn recent years, much effort has been focused on developing new strategies for the prevention and mitigation of adverse radiation effects on healthy tissues and organs, including the brain. The brain is very sensitive to radiation effects, albeit as it is highly plastic. Hence, deleterious radiation effects may be potentially reversible. Because radiation exposure affects dendritic space, reduces the brain's ability to produce new neurons, and alters behavior, mitigation efforts should focus on restoring these parameters. To that effect, environmental enrichment through complex housing (CH) and exercise may provide a plausible avenue for exploration of protection from brain irradiation. CH is a much broader concept than exercise alone, and constitutes exposure of animals to positive physical and social stimulation that is superior to their routine housing and care conditions. We hypothesized that CHs may lessen harmful neuroanatomical and behavioural effects of low dose radiation exposure.\n\n\nMETHODS\nWe analyzed and compared cerebral morphology in animals exposed to low dose head, bystander (liver), and scatter irradiation on rats housed in either the environmental enrichment condos or standard housing.\n\n\nRESULTS\nEnriched condo conditions ameliorated radiation-induced neuroanatomical changes. Moreover, irradiated animals that were kept in enriched CH condos displayed fewer radiation-induced behavioural deficits than those housed in standard conditions.\n\n\nCONCLUSIONS\nAnimal model-based environmental enrichment strategies, such as CH, are excellent surrogate models for occupational and exercise therapy in humans, and consequently have significant translational possibility. Our study may thus serve as a roadmap for the development of new, easy, safe and cost-effective methods to prevent and mitigate low-dose radiation effects on the brain.","PeriodicalId":21130,"journal":{"name":"Restorative neurology and neuroscience","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Restorative neurology and neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/RNN-211216","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
PURPOSE
In recent years, much effort has been focused on developing new strategies for the prevention and mitigation of adverse radiation effects on healthy tissues and organs, including the brain. The brain is very sensitive to radiation effects, albeit as it is highly plastic. Hence, deleterious radiation effects may be potentially reversible. Because radiation exposure affects dendritic space, reduces the brain's ability to produce new neurons, and alters behavior, mitigation efforts should focus on restoring these parameters. To that effect, environmental enrichment through complex housing (CH) and exercise may provide a plausible avenue for exploration of protection from brain irradiation. CH is a much broader concept than exercise alone, and constitutes exposure of animals to positive physical and social stimulation that is superior to their routine housing and care conditions. We hypothesized that CHs may lessen harmful neuroanatomical and behavioural effects of low dose radiation exposure.
METHODS
We analyzed and compared cerebral morphology in animals exposed to low dose head, bystander (liver), and scatter irradiation on rats housed in either the environmental enrichment condos or standard housing.
RESULTS
Enriched condo conditions ameliorated radiation-induced neuroanatomical changes. Moreover, irradiated animals that were kept in enriched CH condos displayed fewer radiation-induced behavioural deficits than those housed in standard conditions.
CONCLUSIONS
Animal model-based environmental enrichment strategies, such as CH, are excellent surrogate models for occupational and exercise therapy in humans, and consequently have significant translational possibility. Our study may thus serve as a roadmap for the development of new, easy, safe and cost-effective methods to prevent and mitigate low-dose radiation effects on the brain.
期刊介绍:
This interdisciplinary journal publishes papers relating to the plasticity and response of the nervous system to accidental or experimental injuries and their interventions, transplantation, neurodegenerative disorders and experimental strategies to improve regeneration or functional recovery and rehabilitation. Experimental and clinical research papers adopting fresh conceptual approaches are encouraged. The overriding criteria for publication are novelty, significant experimental or clinical relevance and interest to a multidisciplinary audience. Experiments on un-anesthetized animals should conform with the standards for the use of laboratory animals as established by the Institute of Laboratory Animal Resources, US National Academy of Sciences. Experiments in which paralytic agents are used must be justified. Patient identity should be concealed. All manuscripts are sent out for blind peer review to editorial board members or outside reviewers. Restorative Neurology and Neuroscience is a member of Neuroscience Peer Review Consortium.