Optimal scheduling of the energy storage system in a hybrid micro-grid considering uncertainties, using the stochastic quasi-gradient method

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Smart Grid Pub Date : 2023-06-01 DOI:10.1049/stg2.12115
Masoud Ghazipour Shirvan, Mohamad Hosseini Abardeh, Mehrdad Hojjat
{"title":"Optimal scheduling of the energy storage system in a hybrid micro-grid considering uncertainties, using the stochastic quasi-gradient method","authors":"Masoud Ghazipour Shirvan,&nbsp;Mohamad Hosseini Abardeh,&nbsp;Mehrdad Hojjat","doi":"10.1049/stg2.12115","DOIUrl":null,"url":null,"abstract":"<p>Energy storage and renewable sources play a unique role in the future advances of smart grids. In this article, the optimal scheduling of the energy storage system in a hybrid microgrid is presented considering the uncertainties of the renewable generations and the load. The optimisation problem in this article is non-linear and non-convex, therefore conventional optimisation methods such as linear programming (LP) are unable to solve this problem. On the other hand, because of parameters uncertainty, special considerations are required to simulate these parameters. In this regard, a new optimisation algorithm that can solve the non-linearity and non-convexity of the objective function is proposed based on the Stochastic Quasi-Gradient optimisation Method (SQGM). Moreover, the uncertainties of the wind, PV generation, and the load are modelled. Different optimisation algorithms: the conventional Stochastic Dynamic Programming (SDP), the Stochastic Dual Dynamic Programming (SDDP) and the proposed SQGM are compared. A 9-bus benchmark system with distributed generation units is used to evaluate the optimisation strategies.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"6 5","pages":"480-491"},"PeriodicalIF":2.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12115","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Grid","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/stg2.12115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Energy storage and renewable sources play a unique role in the future advances of smart grids. In this article, the optimal scheduling of the energy storage system in a hybrid microgrid is presented considering the uncertainties of the renewable generations and the load. The optimisation problem in this article is non-linear and non-convex, therefore conventional optimisation methods such as linear programming (LP) are unable to solve this problem. On the other hand, because of parameters uncertainty, special considerations are required to simulate these parameters. In this regard, a new optimisation algorithm that can solve the non-linearity and non-convexity of the objective function is proposed based on the Stochastic Quasi-Gradient optimisation Method (SQGM). Moreover, the uncertainties of the wind, PV generation, and the load are modelled. Different optimisation algorithms: the conventional Stochastic Dynamic Programming (SDP), the Stochastic Dual Dynamic Programming (SDDP) and the proposed SQGM are compared. A 9-bus benchmark system with distributed generation units is used to evaluate the optimisation strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑不确定性的混合微电网储能系统优化调度研究
能源储存和可再生能源在智能电网的未来发展中发挥着独特的作用。本文研究了考虑可再生能源发电机组和负荷不确定性的混合微电网储能系统优化调度问题。本文的优化问题是非线性和非凸的,因此传统的优化方法,如线性规划(LP)无法解决这个问题。另一方面,由于参数的不确定性,在模拟这些参数时需要特别考虑。为此,在随机拟梯度优化方法(SQGM)的基础上,提出了一种求解目标函数非线性和非凸性的优化算法。此外,还对风力、光伏发电和负荷的不确定性进行了建模。不同的优化算法:传统的随机动态规划(SDP),随机对偶动态规划(SDDP)和提出的SQGM进行了比较。采用带有分布式发电机组的9总线基准系统对优化策略进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Smart Grid
IET Smart Grid Computer Science-Computer Networks and Communications
CiteScore
6.70
自引率
4.30%
发文量
41
审稿时长
29 weeks
期刊最新文献
Incentivising peers in local transactive energy markets: A case study for consumers, prosumers and prosumagers Comprehensive review on dynamic state estimation techniques with cybersecurity applications Guest Editorial: Energy storage for green transition of electrical grids A deep learning based communication traffic prediction approach for smart monitoring of distributed energy resources in virtual power plants Guest Editorial: Planning and operation of integrated energy systems for decarbonisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1