{"title":"Optimal scheduling of the energy storage system in a hybrid micro-grid considering uncertainties, using the stochastic quasi-gradient method","authors":"Masoud Ghazipour Shirvan, Mohamad Hosseini Abardeh, Mehrdad Hojjat","doi":"10.1049/stg2.12115","DOIUrl":null,"url":null,"abstract":"<p>Energy storage and renewable sources play a unique role in the future advances of smart grids. In this article, the optimal scheduling of the energy storage system in a hybrid microgrid is presented considering the uncertainties of the renewable generations and the load. The optimisation problem in this article is non-linear and non-convex, therefore conventional optimisation methods such as linear programming (LP) are unable to solve this problem. On the other hand, because of parameters uncertainty, special considerations are required to simulate these parameters. In this regard, a new optimisation algorithm that can solve the non-linearity and non-convexity of the objective function is proposed based on the Stochastic Quasi-Gradient optimisation Method (SQGM). Moreover, the uncertainties of the wind, PV generation, and the load are modelled. Different optimisation algorithms: the conventional Stochastic Dynamic Programming (SDP), the Stochastic Dual Dynamic Programming (SDDP) and the proposed SQGM are compared. A 9-bus benchmark system with distributed generation units is used to evaluate the optimisation strategies.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12115","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Grid","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/stg2.12115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Energy storage and renewable sources play a unique role in the future advances of smart grids. In this article, the optimal scheduling of the energy storage system in a hybrid microgrid is presented considering the uncertainties of the renewable generations and the load. The optimisation problem in this article is non-linear and non-convex, therefore conventional optimisation methods such as linear programming (LP) are unable to solve this problem. On the other hand, because of parameters uncertainty, special considerations are required to simulate these parameters. In this regard, a new optimisation algorithm that can solve the non-linearity and non-convexity of the objective function is proposed based on the Stochastic Quasi-Gradient optimisation Method (SQGM). Moreover, the uncertainties of the wind, PV generation, and the load are modelled. Different optimisation algorithms: the conventional Stochastic Dynamic Programming (SDP), the Stochastic Dual Dynamic Programming (SDDP) and the proposed SQGM are compared. A 9-bus benchmark system with distributed generation units is used to evaluate the optimisation strategies.