Zhang Zhang, Mi Zhang, J. Gong, Xiangyun Hu, Hanjiang Xiong, H. Zhou, Zhipeng Cao
{"title":"LuoJiaAI: A cloud-based artificial intelligence platform for remote sensing image interpretation","authors":"Zhang Zhang, Mi Zhang, J. Gong, Xiangyun Hu, Hanjiang Xiong, H. Zhou, Zhipeng Cao","doi":"10.1080/10095020.2022.2162980","DOIUrl":null,"url":null,"abstract":"ABSTRACT The rapid processing, analysis, and mining of remote-sensing big data based on intelligent interpretation technology using remote-sensing cloud computing platforms (RS-CCPs) have recently become a new trend. The existing RS-CCPs mainly focus on developing and optimizing high-performance data storage and intelligent computing for common visual representation, which ignores remote sensing data characteristics such as large image size, large-scale change, multiple data channels, and geographic knowledge embedding, thus impairing computational efficiency and accuracy. We construct a LuoJiaAI platform composed of a standard large-scale sample database (LuoJiaSET) and a dedicated deep learning framework (LuoJiaNET) to achieve state-of-the-art performance on five typical remote sensing interpretation tasks, including scene classification, object detection, land-use classification, change detection, and multi-view 3D reconstruction. The details of the LuoJiaAI application experiment can be found at the white paper for LuoJiaAI industrial application. In addition, LuoJiaAI is an open-source RS-CCP that supports the latest Open Geospatial Consortium (OGC) standards for better developing and sharing Earth Artificial Intelligence (AI) algorithms and products on benchmark datasets. LuoJiaAI narrows the gap between the sample database and deep learning frameworks through a user-friendly data-framework collaboration mechanism, showing great potential in high-precision remote sensing mapping applications.","PeriodicalId":58518,"journal":{"name":"武测译文","volume":"26 1","pages":"218 - 241"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"武测译文","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1080/10095020.2022.2162980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT The rapid processing, analysis, and mining of remote-sensing big data based on intelligent interpretation technology using remote-sensing cloud computing platforms (RS-CCPs) have recently become a new trend. The existing RS-CCPs mainly focus on developing and optimizing high-performance data storage and intelligent computing for common visual representation, which ignores remote sensing data characteristics such as large image size, large-scale change, multiple data channels, and geographic knowledge embedding, thus impairing computational efficiency and accuracy. We construct a LuoJiaAI platform composed of a standard large-scale sample database (LuoJiaSET) and a dedicated deep learning framework (LuoJiaNET) to achieve state-of-the-art performance on five typical remote sensing interpretation tasks, including scene classification, object detection, land-use classification, change detection, and multi-view 3D reconstruction. The details of the LuoJiaAI application experiment can be found at the white paper for LuoJiaAI industrial application. In addition, LuoJiaAI is an open-source RS-CCP that supports the latest Open Geospatial Consortium (OGC) standards for better developing and sharing Earth Artificial Intelligence (AI) algorithms and products on benchmark datasets. LuoJiaAI narrows the gap between the sample database and deep learning frameworks through a user-friendly data-framework collaboration mechanism, showing great potential in high-precision remote sensing mapping applications.