In situ formation of FePO4-II: a neutron diffraction study

IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY High Pressure Research Pub Date : 2020-12-08 DOI:10.1080/08957959.2020.1853123
C. Wilson, C. Ridley, S. Macleod, C. Bull
{"title":"In situ formation of FePO4-II: a neutron diffraction study","authors":"C. Wilson, C. Ridley, S. Macleod, C. Bull","doi":"10.1080/08957959.2020.1853123","DOIUrl":null,"url":null,"abstract":"ABSTRACT The structural transformation of FePO from the trigonal berlinite phase to the orthorhombic CrVO phase has been studied using neutron diffraction at high pressure and high-temperature. The berlinite structure was compressed to a pressure of 5.2(2) GPa and amorphisation observed. Upon annealing at temperatures above 798(28) K the high pressure FePO structure was observed to form. This lowers the formation temperature required to promote this phase over the amorphous phase by ∼100 K compared to previous reports. No other structured phases were observed during the formation process which implies that the CrVO structure is the most stable form at high pressures and is kinetically inhibited from forming at low temperatures.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"41 1","pages":"14 - 26"},"PeriodicalIF":1.2000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08957959.2020.1853123","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Pressure Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/08957959.2020.1853123","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The structural transformation of FePO from the trigonal berlinite phase to the orthorhombic CrVO phase has been studied using neutron diffraction at high pressure and high-temperature. The berlinite structure was compressed to a pressure of 5.2(2) GPa and amorphisation observed. Upon annealing at temperatures above 798(28) K the high pressure FePO structure was observed to form. This lowers the formation temperature required to promote this phase over the amorphous phase by ∼100 K compared to previous reports. No other structured phases were observed during the formation process which implies that the CrVO structure is the most stable form at high pressures and is kinetically inhibited from forming at low temperatures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FePO4-II的原位形成:中子衍射研究
利用中子衍射研究了FePO在高压高温条件下由三角形berlinite相向正交CrVO相的结构转变。在5.2(2)GPa的压力下,铍石结构被压缩,出现了非晶化现象。在798(28)K以上退火时,观察到形成了高压FePO结构。与之前的报道相比,这降低了促进该相超过非晶相所需的形成温度~ 100 K。在形成过程中没有观察到其他结构相,这意味着CrVO结构在高压下是最稳定的形式,在低温下受到动力学抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
High Pressure Research
High Pressure Research 物理-物理:综合
CiteScore
3.80
自引率
5.00%
发文量
15
审稿时长
2 months
期刊介绍: High Pressure Research is the leading journal for research in high pressure science and technology. The journal publishes original full-length papers and short research reports of new developments, as well as timely review articles. It provides an important forum for the presentation of experimental and theoretical advances in high pressure science in subjects such as: condensed matter physics and chemistry geophysics and planetary physics synthesis of new materials chemical kinetics under high pressure industrial applications shockwaves in condensed matter instrumentation and techniques the application of pressure to food / biomaterials Theoretical papers of exceptionally high quality are also accepted.
期刊最新文献
Synchrotron x-ray diffraction and DFT study of non-centrosymmetric EuRhGe3 under high pressure EBS status of the large-volume press at beamline ID06-LVP Extreme conditions X-ray diffraction and imaging beamline ID15B on the ESRF extremely brilliant source In situ X-ray absorption spectroscopy using the FAME autoclave: a window into fluid-mineral-melt interactions in the Earth’s crust Science under extreme conditions at the ESRF Extremely Brilliant Source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1