{"title":"A prediction approach of concrete carbonation based on the inverse Gaussian process and Bayesian method","authors":"Long Chen, Tian-Li Huang, Huapeng Chen","doi":"10.1680/jmacr.23.00031","DOIUrl":null,"url":null,"abstract":"Concrete carbonation is one of the major factors causing the deterioration of reinforced concrete structures, and accurately predicting carbonation depth is of great significance for the safety assessment of the structure. This study aims to develop a prediction method of carbonation behavior by incorporating multi-source information using the Bayesian method. First, in the proposed approach, the inverse Gaussian process is used to model the evolution process of carbonation depth, which can capture the temporal variability and the monotonicity of the deterioration phenomenon very well. Then, a proper prior for model is determined by absorbing the knowledge of the existing empirical carbonation model. To fuse the accelerated data and field inspection data, the Bayesian inference is performed to update the posterior distributions of model parameters by Gibbs sampling technique. Finally, a practical case is performed to illustrate the validity and accuracy of our proposed approach.","PeriodicalId":18113,"journal":{"name":"Magazine of Concrete Research","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magazine of Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jmacr.23.00031","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Concrete carbonation is one of the major factors causing the deterioration of reinforced concrete structures, and accurately predicting carbonation depth is of great significance for the safety assessment of the structure. This study aims to develop a prediction method of carbonation behavior by incorporating multi-source information using the Bayesian method. First, in the proposed approach, the inverse Gaussian process is used to model the evolution process of carbonation depth, which can capture the temporal variability and the monotonicity of the deterioration phenomenon very well. Then, a proper prior for model is determined by absorbing the knowledge of the existing empirical carbonation model. To fuse the accelerated data and field inspection data, the Bayesian inference is performed to update the posterior distributions of model parameters by Gibbs sampling technique. Finally, a practical case is performed to illustrate the validity and accuracy of our proposed approach.
期刊介绍:
For concrete and other cementitious derivatives to be developed further, we need to understand the use of alternative hydraulically active materials used in combination with plain Portland Cement, sustainability and durability issues. Both fundamental and best practice issues need to be addressed.
Magazine of Concrete Research covers every aspect of concrete manufacture and behaviour from performance and evaluation of constituent materials to mix design, testing, durability, structural analysis and composite construction.