A Tutorial on Causal Inference in Longitudinal Data With Time-Varying Confounding Using G-Estimation

IF 15.6 1区 心理学 Q1 PSYCHOLOGY Advances in Methods and Practices in Psychological Science Pub Date : 2023-07-01 DOI:10.1177/25152459231174029
W. W. Loh, Dongning Ren
{"title":"A Tutorial on Causal Inference in Longitudinal Data With Time-Varying Confounding Using G-Estimation","authors":"W. W. Loh, Dongning Ren","doi":"10.1177/25152459231174029","DOIUrl":null,"url":null,"abstract":"In psychological research, longitudinal study designs are often used to examine the effects of a naturally observed predictor (i.e., treatment) on an outcome over time. But causal inference of longitudinal data in the presence of time-varying confounding is notoriously challenging. In this tutorial, we introduce g-estimation, a well-established estimation strategy from the causal inference literature. G-estimation is a powerful analytic tool designed to handle time-varying confounding variables affected by treatment. We offer step-by-step guidance on implementing the g-estimation method using standard parametric regression functions familiar to psychological researchers and commonly available in statistical software. To facilitate hands-on usage, we provide software code at each step using the open-source statistical software R. All the R code presented in this tutorial are publicly available online.","PeriodicalId":55645,"journal":{"name":"Advances in Methods and Practices in Psychological Science","volume":" ","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methods and Practices in Psychological Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/25152459231174029","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

In psychological research, longitudinal study designs are often used to examine the effects of a naturally observed predictor (i.e., treatment) on an outcome over time. But causal inference of longitudinal data in the presence of time-varying confounding is notoriously challenging. In this tutorial, we introduce g-estimation, a well-established estimation strategy from the causal inference literature. G-estimation is a powerful analytic tool designed to handle time-varying confounding variables affected by treatment. We offer step-by-step guidance on implementing the g-estimation method using standard parametric regression functions familiar to psychological researchers and commonly available in statistical software. To facilitate hands-on usage, we provide software code at each step using the open-source statistical software R. All the R code presented in this tutorial are publicly available online.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于g估计的时变混杂纵向数据因果推理教程
在心理学研究中,纵向研究设计通常用于检查自然观察到的预测因素(即治疗)对结果的影响。但是,在时变混杂的情况下,纵向数据的因果推断是非常具有挑战性的。在本教程中,我们将介绍g估计,这是一种来自因果推理文献的成熟估计策略。g估计是一种强大的分析工具,用于处理受治疗影响的时变混杂变量。我们提供一步一步的指导,实现使用标准参数回归函数的g估计方法,心理学研究人员熟悉,通常在统计软件中可用。为了便于实际操作,我们在每个步骤中使用开源统计软件R提供软件代码。本教程中提供的所有R代码都可以在网上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
21.20
自引率
0.70%
发文量
16
期刊介绍: In 2021, Advances in Methods and Practices in Psychological Science will undergo a transition to become an open access journal. This journal focuses on publishing innovative developments in research methods, practices, and conduct within the field of psychological science. It embraces a wide range of areas and topics and encourages the integration of methodological and analytical questions. The aim of AMPPS is to bring the latest methodological advances to researchers from various disciplines, even those who are not methodological experts. Therefore, the journal seeks submissions that are accessible to readers with different research interests and that represent the diverse research trends within the field of psychological science. The types of content that AMPPS welcomes include articles that communicate advancements in methods, practices, and metascience, as well as empirical scientific best practices. Additionally, tutorials, commentaries, and simulation studies on new techniques and research tools are encouraged. The journal also aims to publish papers that bring advances from specialized subfields to a broader audience. Lastly, AMPPS accepts Registered Replication Reports, which focus on replicating important findings from previously published studies. Overall, the transition of Advances in Methods and Practices in Psychological Science to an open access journal aims to increase accessibility and promote the dissemination of new developments in research methods and practices within the field of psychological science.
期刊最新文献
Bayesian Analysis of Cross-Sectional Networks: A Tutorial in R and JASP Conducting Research With People in Lower-Socioeconomic-Status Contexts Keeping Meta-Analyses Alive and Well: A Tutorial on Implementing and Using Community-Augmented Meta-Analyses in PsychOpen CAMA A Practical Guide to Conversation Research: How to Study What People Say to Each Other Impossible Hypotheses and Effect-Size Limits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1