{"title":"Research on optimal scheduling of integrated energy system in low-carbon parks based on demand response","authors":"Wei Xu, W. Han, Huaizhang Jin, Y. Bai, Huan Liu","doi":"10.1093/ijlct/ctad020","DOIUrl":null,"url":null,"abstract":"\n The comprehensive energy system of the park is one of the effective ways to solve the problems of low utilization efficiency of comprehensive energy and difficulty in absorbing renewable energy. By coordinating the output of each unit to optimize the scheduling of the system, the operating cost of the system can be reduced to a certain extent, and the space for new energy generation to be connected to the Internet can be increased. Aiming at the characteristics of electric, heat and gas load demand of the integrated energy system of industrial low-carbon parks and the overall needs of low-carbon development, a research on the optimal scheduling of integrated energy systems in low-carbon parks based on demand response is proposed. By analyzing the structure and components of the integrated energy system of the low-carbon park, different types of demand response are modeled. On this basis, based on the comprehensive demand response of electricity and heat, the optimal dispatch model of the integrated energy system of the low-carbon park is constructed, and the model is solved to realize the optimal dispatch of the integrated energy system of the low-carbon park. The experimental results show that the proposed method has lower operating cost of the integrated energy system, better economy of the integrated energy system, and can effectively improve the power supply reliability and energy saving rate of the integrated energy system. The average system load rate of the proposed method is up to 98.7%, the average comprehensive energy utilization rate is up to 97.9%, and the system operation cost is only 10343.1 yuan.","PeriodicalId":14118,"journal":{"name":"International Journal of Low-carbon Technologies","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Low-carbon Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/ijlct/ctad020","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The comprehensive energy system of the park is one of the effective ways to solve the problems of low utilization efficiency of comprehensive energy and difficulty in absorbing renewable energy. By coordinating the output of each unit to optimize the scheduling of the system, the operating cost of the system can be reduced to a certain extent, and the space for new energy generation to be connected to the Internet can be increased. Aiming at the characteristics of electric, heat and gas load demand of the integrated energy system of industrial low-carbon parks and the overall needs of low-carbon development, a research on the optimal scheduling of integrated energy systems in low-carbon parks based on demand response is proposed. By analyzing the structure and components of the integrated energy system of the low-carbon park, different types of demand response are modeled. On this basis, based on the comprehensive demand response of electricity and heat, the optimal dispatch model of the integrated energy system of the low-carbon park is constructed, and the model is solved to realize the optimal dispatch of the integrated energy system of the low-carbon park. The experimental results show that the proposed method has lower operating cost of the integrated energy system, better economy of the integrated energy system, and can effectively improve the power supply reliability and energy saving rate of the integrated energy system. The average system load rate of the proposed method is up to 98.7%, the average comprehensive energy utilization rate is up to 97.9%, and the system operation cost is only 10343.1 yuan.
期刊介绍:
The International Journal of Low-Carbon Technologies is a quarterly publication concerned with the challenge of climate change and its effects on the built environment and sustainability. The Journal publishes original, quality research papers on issues of climate change, sustainable development and the built environment related to architecture, building services engineering, civil engineering, building engineering, urban design and other disciplines. It features in-depth articles, technical notes, review papers, book reviews and special issues devoted to international conferences. The journal encourages submissions related to interdisciplinary research in the built environment. The journal is available in paper and electronic formats. All articles are peer-reviewed by leading experts in the field.