Evaluación de parámetros de segmentación en OBIA para la clasificación de coberturas del suelo a partir de imágenes VANT

IF 0.4 Q4 REMOTE SENSING Revista de Teledeteccion Pub Date : 2021-07-21 DOI:10.4995/RAET.2021.14782
S. I. Hinojosa-Espinoza, José Luis Gallardo-Salazar, Félix J. C. Hinojosa-Espinoza, Anulfo Meléndez-Soto
{"title":"Evaluación de parámetros de segmentación en OBIA para la clasificación de coberturas del suelo a partir de imágenes VANT","authors":"S. I. Hinojosa-Espinoza, José Luis Gallardo-Salazar, Félix J. C. Hinojosa-Espinoza, Anulfo Meléndez-Soto","doi":"10.4995/RAET.2021.14782","DOIUrl":null,"url":null,"abstract":"Unmanned Aerial Vehicles (UAVs) have given a new boost to remote sensing and image classification techniques due to the high level of detail among other factors. Object-based image analysis (OBIA) could improve classification accuracy unlike to pixel-based, especially in high-resolution images. OBIA application for image classification consists of three stages i.e., segmentation, class definition and training polygons, and classification. However, defining the parameters: spatial radius (SR), range radius (RR) and minimum region size (MR) is necessary during the segmentation stage. Despite their relevance, they are usually visually adjusted, which leads to a subjective interpretation. Therefore, it is of utmost importance to generate knowledge focused on evaluating combinations of these parameters. This study describes the use of the mean-shift segmentation algorithm followed by Random Forest classifier using Orfeo Toolbox software. It was considered a multispectral orthomosaic derived from UAV to generate a suburban map land cover in town of El Pueblito, Durango, Mexico. The main aim was to evaluate efficiency and segmentation quality of nine parameter combinations previously reported in scientific studies.This in terms of number generated polygons, processing time, discrepancy measures for segmentation and classification accuracy metrics. Results evidenced the importance of calibrating the input parameters in the segmentation algorithms. Best combination was RE=5, RR=7 and TMR=250, with a Kappa index of 0.90 and shortest processing time. On the other hand, RR showed a strong and inversely proportional degree of association regarding the classification accuracy metrics.","PeriodicalId":43626,"journal":{"name":"Revista de Teledeteccion","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Teledeteccion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/RAET.2021.14782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Unmanned Aerial Vehicles (UAVs) have given a new boost to remote sensing and image classification techniques due to the high level of detail among other factors. Object-based image analysis (OBIA) could improve classification accuracy unlike to pixel-based, especially in high-resolution images. OBIA application for image classification consists of three stages i.e., segmentation, class definition and training polygons, and classification. However, defining the parameters: spatial radius (SR), range radius (RR) and minimum region size (MR) is necessary during the segmentation stage. Despite their relevance, they are usually visually adjusted, which leads to a subjective interpretation. Therefore, it is of utmost importance to generate knowledge focused on evaluating combinations of these parameters. This study describes the use of the mean-shift segmentation algorithm followed by Random Forest classifier using Orfeo Toolbox software. It was considered a multispectral orthomosaic derived from UAV to generate a suburban map land cover in town of El Pueblito, Durango, Mexico. The main aim was to evaluate efficiency and segmentation quality of nine parameter combinations previously reported in scientific studies.This in terms of number generated polygons, processing time, discrepancy measures for segmentation and classification accuracy metrics. Results evidenced the importance of calibrating the input parameters in the segmentation algorithms. Best combination was RE=5, RR=7 and TMR=250, with a Kappa index of 0.90 and shortest processing time. On the other hand, RR showed a strong and inversely proportional degree of association regarding the classification accuracy metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无人机图像的OBIA土壤覆盖分类分割参数评估
无人驾驶飞行器(uav)由于其高水平的细节以及其他因素,给遥感和图像分类技术带来了新的推动。与基于像素的分类方法相比,基于目标的图像分析(OBIA)可以提高分类精度,特别是在高分辨率图像中。OBIA在图像分类中的应用包括三个阶段:分割、类定义和训练多边形、分类。然而,在分割阶段,必须定义空间半径(SR)、距离半径(RR)和最小区域大小(MR)等参数。尽管它们具有相关性,但它们通常是经过视觉调整的,这导致了主观的解释。因此,产生专注于评估这些参数组合的知识是至关重要的。本研究描述了在Orfeo Toolbox软件中使用mean-shift分割算法和Random Forest分类器。利用无人机的多光谱正射影图生成了墨西哥杜兰戈El Pueblito镇的郊区地图。主要目的是评价科学研究中报道的九种参数组合的分割效率和分割质量。这包括生成多边形的数量、处理时间、分割的差异度量和分类精度度量。结果证明了输入参数标定在分割算法中的重要性。最佳组合为RE=5, RR=7, TMR=250, Kappa指数为0.90,加工时间最短。另一方面,RR在分类精度指标上表现出强烈的反比关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista de Teledeteccion
Revista de Teledeteccion REMOTE SENSING-
CiteScore
1.80
自引率
14.30%
发文量
11
审稿时长
10 weeks
期刊最新文献
Clasificación de uso y cobertura del suelo a través de algoritmos de aprendizaje automático: revisión bibliográfica Mapeo semiautomático de áreas quemadas en Chimborazo-Ecuador utilizando medias compuestas de dNBR con umbrales ajustados Análisis espacio-temporal de florecimientos algales nocivos en un lago-cráter tropical usando datos MODIS (2003-2020) Estimación de biomasa y carbono con herramientas de teledetección en bosques secos tropicales del Tolima, Colombia Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1