Bayesian Inference for Weibull Distribution under the Balanced Joint Type-II Progressive Censoring Scheme

Q3 Business, Management and Accounting American Journal of Mathematical and Management Sciences Pub Date : 2020-01-02 DOI:10.1080/01966324.2019.1579124
Shuvashree Mondal, D. Kundu
{"title":"Bayesian Inference for Weibull Distribution under the Balanced Joint Type-II Progressive Censoring Scheme","authors":"Shuvashree Mondal, D. Kundu","doi":"10.1080/01966324.2019.1579124","DOIUrl":null,"url":null,"abstract":"SYNOPTIC ABSTRACT Progressive censoring schemes have received considerable attention recently. All of these developments are mainly based on a single population. Recently, Mondal and Kundu (2016) introduced the balanced joint progressive censoring scheme (BJPC), and studied the exact inference for two exponential populations. It is well known that the exponential distribution has some limitations. In this article, we implement the BJPC scheme on two Weibull populations with the common shape parameter. The treatment here is purely Bayesian in nature. Under the Bayesian set up we assume a Beta Gamma prior of the scale parameters, and an independent Gamma prior for the common shape parameter. Under these prior assumptions, the Bayes estimators cannot be obtained in closed forms, and we use the importance sampling technique to compute the Bayes estimators and the associated credible intervals. We further consider the order restricted Bayesian inference of the parameters based on the ordered Beta Gamma priors of the scale parameters. We propose one precision criteria based on expected volume of the joint credible set of model parameters to find out the optimum censoring scheme. We perform extensive simulation experiments to study the performance of the estimators, and finally analyze one real data set for illustrative purposes.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"39 1","pages":"56 - 74"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2019.1579124","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2019.1579124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 21

Abstract

SYNOPTIC ABSTRACT Progressive censoring schemes have received considerable attention recently. All of these developments are mainly based on a single population. Recently, Mondal and Kundu (2016) introduced the balanced joint progressive censoring scheme (BJPC), and studied the exact inference for two exponential populations. It is well known that the exponential distribution has some limitations. In this article, we implement the BJPC scheme on two Weibull populations with the common shape parameter. The treatment here is purely Bayesian in nature. Under the Bayesian set up we assume a Beta Gamma prior of the scale parameters, and an independent Gamma prior for the common shape parameter. Under these prior assumptions, the Bayes estimators cannot be obtained in closed forms, and we use the importance sampling technique to compute the Bayes estimators and the associated credible intervals. We further consider the order restricted Bayesian inference of the parameters based on the ordered Beta Gamma priors of the scale parameters. We propose one precision criteria based on expected volume of the joint credible set of model parameters to find out the optimum censoring scheme. We perform extensive simulation experiments to study the performance of the estimators, and finally analyze one real data set for illustrative purposes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平衡联合II型渐进Censoring方案下威布尔分布的贝叶斯推断
摘要渐进审查方案近年来受到了广泛的关注。所有这些发展主要是基于单一人口。最近,Mondal和Kundu(2016)引入了平衡联合渐进审查方案(BJPC),并研究了两个指数种群的精确推理。众所周知,指数分布有一些局限性。在本文中,我们在具有公共形状参数的两个威布尔总体上实现了BJPC方案。这里的处理本质上是纯粹的贝叶斯。在贝叶斯设置下,我们假设尺度参数的贝塔-伽马先验,以及公共形状参数的独立伽马先验。在这些先验假设下,贝叶斯估计量不能以闭合形式获得,我们使用重要性抽样技术来计算贝叶斯估计量和相关的可信区间。我们进一步考虑了基于尺度参数的有序贝塔-伽马先验的参数的顺序受限贝叶斯推断。我们提出了一个基于联合可信模型参数集的期望体积的精度准则来找出最优截尾方案。我们进行了大量的模拟实验来研究估计器的性能,并最终分析了一个真实的数据集以便于说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
期刊最新文献
The Unit Omega Distribution, Properties and Its Application Classical and Bayesian Inference of Unit Gompertz Distribution Based on Progressively Type II Censored Data An Alternative Discrete Analogue of the Half-Logistic Distribution Based on Minimization of a Distance between Cumulative Distribution Functions Classical and Bayes Analyses of Autoregressive Model with Heavy-Tailed Error Testing on the Quantiles of a Single Normal Population in the Presence of Several Normal Populations with a Common Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1