{"title":"Indirect inference estimation of higher-order spatial autoregressive models","authors":"Yong Bao","doi":"10.1080/07474938.2023.2178136","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes estimating parameters in higher-order spatial autoregressive models, where the error term also follows a spatial autoregression and its innovations are heteroskedastic, by matching the simple ordinary least squares estimator with its analytical approximate expectation, following the principle of indirect inference. The resulting estimator is shown to be consistent, asymptotically normal, simulation-free, and robust to unknown heteroskedasticity. Monte Carlo simulations demonstrate its good finite-sample properties in comparison with existing estimators. An empirical study of Airbnb rental prices in the city of Asheville illustrates that the structure of spatial correlation and effects of various factors at the early stage of the COVID-19 pandemic are quite different from those during the second summer. Notably, during the pandemic, safety is valued more and on-line reviews are valued much less.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"42 1","pages":"247 - 280"},"PeriodicalIF":0.8000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2023.2178136","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper proposes estimating parameters in higher-order spatial autoregressive models, where the error term also follows a spatial autoregression and its innovations are heteroskedastic, by matching the simple ordinary least squares estimator with its analytical approximate expectation, following the principle of indirect inference. The resulting estimator is shown to be consistent, asymptotically normal, simulation-free, and robust to unknown heteroskedasticity. Monte Carlo simulations demonstrate its good finite-sample properties in comparison with existing estimators. An empirical study of Airbnb rental prices in the city of Asheville illustrates that the structure of spatial correlation and effects of various factors at the early stage of the COVID-19 pandemic are quite different from those during the second summer. Notably, during the pandemic, safety is valued more and on-line reviews are valued much less.
期刊介绍:
Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.