{"title":"Design and analysis of outer-rotor in-wheel motor driving system of electric vehicle","authors":"Qiping Chen, Q. Xiao, Changping Qiu, Sheng Kang, Huang Juanlin, Conghui Zhou","doi":"10.1504/ijehv.2019.10024314","DOIUrl":null,"url":null,"abstract":"To improve the working reliability and service life of the outer-rotor in-wheel motor of the electric vehicle, and based on the electric vehicle parameters and motion equations, the rated torque, rated efficiency and other performance parameters are determined. The internal dimensions of the in-wheel motor are designed according to the parameters of electric vehicle, including stator winding, air gap and permanent magnet, which are used to calculate the electromagnetic circuit and the electromagnetic parameters. The model of the in-wheel motor is established by Ansoft Maxwell software and the designed motor is analysed by the finite element analysis method. The magnetic field inside the in-wheel motor at different timings is analysed. The conformity of the simulation results and the design calculation results indicate that this method can be used to provide a theoretical basis to make further optimal design of the outer-rotor in-wheel motor driving system.","PeriodicalId":43639,"journal":{"name":"International Journal of Electric and Hybrid Vehicles","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electric and Hybrid Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijehv.2019.10024314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
To improve the working reliability and service life of the outer-rotor in-wheel motor of the electric vehicle, and based on the electric vehicle parameters and motion equations, the rated torque, rated efficiency and other performance parameters are determined. The internal dimensions of the in-wheel motor are designed according to the parameters of electric vehicle, including stator winding, air gap and permanent magnet, which are used to calculate the electromagnetic circuit and the electromagnetic parameters. The model of the in-wheel motor is established by Ansoft Maxwell software and the designed motor is analysed by the finite element analysis method. The magnetic field inside the in-wheel motor at different timings is analysed. The conformity of the simulation results and the design calculation results indicate that this method can be used to provide a theoretical basis to make further optimal design of the outer-rotor in-wheel motor driving system.
期刊介绍:
IJEHV provides a high quality, fully refereed international forum in the field of electric and hybrid automotive systems, including in-vehicle electricity production such as hydrogen fuel cells, to describe innovative solutions for the technical challenges enabling these new propulsion technologies.