An experimental and FEM study on ultrasonic-assisted turning of titanium alloy

IF 2.7 4区 工程技术 Q2 ENGINEERING, MANUFACTURING Machining Science and Technology Pub Date : 2023-07-04 DOI:10.1080/10910344.2023.2231066
E. Bachir, R. Bejjani
{"title":"An experimental and FEM study on ultrasonic-assisted turning of titanium alloy","authors":"E. Bachir, R. Bejjani","doi":"10.1080/10910344.2023.2231066","DOIUrl":null,"url":null,"abstract":"Abstract The increase in demand for aerospace parts leads to a need for effective and efficient machining methods to enhance the machinability of titanium alloys. This research investigates the effect of ultrasonic-assisted turning (UAT) on aerospace titanium alloy Ti-6Al-4V by varying cutting parameters. Ultrasonic turning experiments were conducted to investigate the reduction in cutting forces and tool wear at different cutting parameters with wear and surface roughness analysis. Consequently, a finite element model is used to simulate the ultrasonic turning of titanium to have a better understanding of the effect of UAT on stresses and temperature profiles in the process and help explain the results found experimentally. Separation time between the tool and chip was found to be inversely proportional to the cutting speed and the depth of cut with a reduction in cutting forces and surface roughness of up to 42.5% and 61.4%, respectively, for low cutting speed and depth of cut. Tool wear is also shown to decrease in the ultrasonic machining where adhesion-diffusion wear is reduced on the rake face due to separation in the tool-chip interface. The chip temperature was found to increase while the tool temperature is found to decrease with the motion of the tool.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2023.2231066","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The increase in demand for aerospace parts leads to a need for effective and efficient machining methods to enhance the machinability of titanium alloys. This research investigates the effect of ultrasonic-assisted turning (UAT) on aerospace titanium alloy Ti-6Al-4V by varying cutting parameters. Ultrasonic turning experiments were conducted to investigate the reduction in cutting forces and tool wear at different cutting parameters with wear and surface roughness analysis. Consequently, a finite element model is used to simulate the ultrasonic turning of titanium to have a better understanding of the effect of UAT on stresses and temperature profiles in the process and help explain the results found experimentally. Separation time between the tool and chip was found to be inversely proportional to the cutting speed and the depth of cut with a reduction in cutting forces and surface roughness of up to 42.5% and 61.4%, respectively, for low cutting speed and depth of cut. Tool wear is also shown to decrease in the ultrasonic machining where adhesion-diffusion wear is reduced on the rake face due to separation in the tool-chip interface. The chip temperature was found to increase while the tool temperature is found to decrease with the motion of the tool.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钛合金超声辅助车削的实验与有限元研究
摘要航空航天零件需求的增加导致需要有效和高效的加工方法来提高钛合金的可加工性。研究了超声辅助车削(UAT)对航空钛合金Ti-6Al-4V的影响。进行了超声波车削实验,通过磨损和表面粗糙度分析,研究了在不同切削参数下切削力和刀具磨损的减少情况。因此,使用有限元模型模拟钛的超声车削,以更好地了解UAT对该过程中应力和温度分布的影响,并有助于解释实验结果。发现刀具和切屑之间的分离时间与切削速度和切削深度成反比,对于低切削速度和低切削深度,切削力和表面粗糙度分别降低42.5%和61.4%。在超声加工中,由于刀具-芯片界面中的分离,前刀面上的粘附扩散磨损减少,刀具磨损也减少。发现切屑温度随着刀具的运动而升高,而刀具温度随着刀具运动而降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machining Science and Technology
Machining Science and Technology 工程技术-材料科学:综合
CiteScore
5.70
自引率
3.70%
发文量
18
审稿时长
6 months
期刊介绍: Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials. Topics covered include: -machining performance of all materials, including lightweight materials- coated and special cutting tools: design and machining performance evaluation- predictive models for machining performance and optimization, including machining dynamics- measurement and analysis of machined surfaces- sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes precision and micro/nano machining- design and implementation of in-process sensors for monitoring and control of machining performance- surface integrity in machining processes, including detection and characterization of machining damage- new and advanced abrasive machining processes: design and performance analysis- cutting fluids and special coolants/lubricants- nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining
期刊最新文献
Investigation on the machining characteristics of AZ91 magnesium alloy using uncoated and CVD-diamond coated WC-Co inserts Combination of minimum quantity lubrication (MQL) with solid lubricant (SL): challenges, predictions and implications for sustainability Novel insights into conventional machining of metal additive manufactured components: a comprehensive review Multiobjective optimization of end milling parameters for enhanced machining performance on 42CrMo4 using machine learning and NSGA-III Flow field design and simulation in electrochemical machining for closed integral components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1