Klasifikasi Sinyal EEG Dengan Power Spectra Density Berbasis Metode Welch Dan MLP Backpropagation

Nursuci Putri Husain, Nurseno Bayu Aji
{"title":"Klasifikasi Sinyal EEG Dengan Power Spectra Density Berbasis Metode Welch Dan MLP Backpropagation","authors":"Nursuci Putri Husain, Nurseno Bayu Aji","doi":"10.31961/ELTIKOM.V3I1.99","DOIUrl":null,"url":null,"abstract":"Electroencephalogram (EEG) signal is a signal that could become an information for study about disorders of brain function  such as Epilepsi. EEG that detected in epileptic seizures produce patterns that allow doctors to distinguish it from normal conditions. However, a visual analysis can not be done continuously. This study proposed a new hybrid method of EEG signal classification using Power Spectral Density (PSD) based on Welch method, Principle Component Analysis (PCA), and Multi Layer Perceptron Backpropagation.There are 3 main stages in this study, firstly preprocessing the dataset of EEG signals by Power Spectral Density (PSD) based on Welch method, then Principle Component Analysis (PCA) as a method of  dimensionallity reduction of the EEG signal data and the Multi Layer Perceptron Backpropagation for classifying a signal. Based on experimental results, the proposed method is successfully obtain high accuracy for the 80-20% training-testing partition (99.68%). \n ","PeriodicalId":33096,"journal":{"name":"Jurnal ELTIKOM Jurnal Teknik Elektro Teknologi Informasi dan Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal ELTIKOM Jurnal Teknik Elektro Teknologi Informasi dan Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31961/ELTIKOM.V3I1.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Electroencephalogram (EEG) signal is a signal that could become an information for study about disorders of brain function  such as Epilepsi. EEG that detected in epileptic seizures produce patterns that allow doctors to distinguish it from normal conditions. However, a visual analysis can not be done continuously. This study proposed a new hybrid method of EEG signal classification using Power Spectral Density (PSD) based on Welch method, Principle Component Analysis (PCA), and Multi Layer Perceptron Backpropagation.There are 3 main stages in this study, firstly preprocessing the dataset of EEG signals by Power Spectral Density (PSD) based on Welch method, then Principle Component Analysis (PCA) as a method of  dimensionallity reduction of the EEG signal data and the Multi Layer Perceptron Backpropagation for classifying a signal. Based on experimental results, the proposed method is successfully obtain high accuracy for the 80-20% training-testing partition (99.68%).  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于韦尔奇方法的功率牙釉质和MLP背景传播的脑电图分类
脑电图(EEG)信号是一种可以成为研究癫痫等脑功能紊乱的信息的信号。在癫痫发作中检测到的脑电图产生的模式使医生能够将其与正常情况区分开来。然而,视觉分析不可能连续进行。本研究提出了一种新的基于Welch方法、主成分分析(PCA)和多层感知器反向传播的功率谱密度(PSD)混合脑电信号分类方法,然后作为EEG信号数据的降维方法的主成分分析(PCA)和用于对信号进行分类的多层感知器反向传播。基于实验结果,该方法成功地获得了80-20%训练测试分区的高精度(99.68%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
6 weeks
期刊最新文献
Internet of Things- Based Automatic Feeder and Monitoring of Water Temperature, PH, and Salinity for Litopenaeus Vannamei Shrimp Smart Rice Box - The Prototype of Organic Rice Storage Anti-Rice Weevil for Food Security during Pandemic Customer Segmentation Based on Loyalty Level Using K-Means and LRFM Feature Selection in Retail Online Store Signature Identification using Digital Image Processing and Machine Learning Methods ANALISIS DAN PERBANDINGAN STEGANOGRAFI PADA MEDIA AUDIO DAN GAMBAR MENGGUNAKAN LSB DAN RC4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1