{"title":"Relationships Between 10 Years of Radar-Observed Supercell Characteristics and Hail Potential","authors":"C. Homeyer, E. M. Murillo, M. Kumjian","doi":"10.1175/mwr-d-23-0019.1","DOIUrl":null,"url":null,"abstract":"\nSupercell storms are commonly responsible for severe hail, which is the costliest severe storm hazard in the United States and elsewhere. Radar observations of such storms are common and have been leveraged to estimate hail size and severe hail occurrence. However, many established relationships between radar-observed storm characteristics and severe hail occurrence have been found using data for few storms and in isolation from other radar metrics. This study leverages a 10-year record of polarimetric Doppler radar observations in the United States to evaluate and compare radar observations of thousands of severe hail-producing supercells based on their maximum hail size. In agreement with prior studies, it is found that increasing hail size relates to increasing volume of high (≥50 dBZ) radar reflectivity, increasing mid-altitude mesocyclone rotation (azimuthal shear), increasing storm-top divergence, and decreased differential reflectivity and co-polar correlation coefficient at low levels (mostly below the environmental 0°C level). New insights include increasing vertical alignment of the storm mesocyclone with increasing hail size and a Doppler velocity spectrum width minimum aloft near storm center that increases in area with increasing hail size and is argued to indicate increasing updraft width. To complement the extensive radar analysis, near-storm environments from reanalyses are compared and indicate that the greatest environmental differences exist in the middle troposphere (within the hail growth region), especially the wind speed perpendicular to storm motion. Recommendations are given for future improvements to radar-based hail-size estimation.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Weather Review","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0019.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Supercell storms are commonly responsible for severe hail, which is the costliest severe storm hazard in the United States and elsewhere. Radar observations of such storms are common and have been leveraged to estimate hail size and severe hail occurrence. However, many established relationships between radar-observed storm characteristics and severe hail occurrence have been found using data for few storms and in isolation from other radar metrics. This study leverages a 10-year record of polarimetric Doppler radar observations in the United States to evaluate and compare radar observations of thousands of severe hail-producing supercells based on their maximum hail size. In agreement with prior studies, it is found that increasing hail size relates to increasing volume of high (≥50 dBZ) radar reflectivity, increasing mid-altitude mesocyclone rotation (azimuthal shear), increasing storm-top divergence, and decreased differential reflectivity and co-polar correlation coefficient at low levels (mostly below the environmental 0°C level). New insights include increasing vertical alignment of the storm mesocyclone with increasing hail size and a Doppler velocity spectrum width minimum aloft near storm center that increases in area with increasing hail size and is argued to indicate increasing updraft width. To complement the extensive radar analysis, near-storm environments from reanalyses are compared and indicate that the greatest environmental differences exist in the middle troposphere (within the hail growth region), especially the wind speed perpendicular to storm motion. Recommendations are given for future improvements to radar-based hail-size estimation.
期刊介绍:
Monthly Weather Review (MWR) (ISSN: 0027-0644; eISSN: 1520-0493) publishes research relevant to the analysis and prediction of observed atmospheric circulations and physics, including technique development, data assimilation, model validation, and relevant case studies. This research includes numerical and data assimilation techniques that apply to the atmosphere and/or ocean environments. MWR also addresses phenomena having seasonal and subseasonal time scales.