Gowtham Cherukumalli, W. Sarasua, Stephen Fry, W. Davis
{"title":"Evaluation of Manual Traffic Control in Directing Traffic Operations for Major Special Events: Clemson University Football Game Day Experience","authors":"Gowtham Cherukumalli, W. Sarasua, Stephen Fry, W. Davis","doi":"10.11648/J.AJTTE.20200502.11","DOIUrl":null,"url":null,"abstract":"Crowd ingress and egress occurring before and after large special events results in oversaturation of the traffic network and is a crucial issue event planners and transportation officials must address. Because intersections constitute the greatest restraint in network traffic flows, efficient operation during special event peak flows is crucial. This research focuses on evaluating how well traffic control officers optimize intersection operations during heavily oversaturated conditions associated with large-scale special events. Network traffic data, including volumes, queues, and traffic officer signal/right-of-way phase times, were collected before and after four Clemson University home football games during the 2014 and 2015 season. Actual traffic count volumes were adjusted to account for vehicle queues and used to develop optimal signal timings using Synchro. These results are compared to field-observed intersection operation using officer directed hand-signaling and officer traffic signal pushbutton operation. A microscopic VISSIM model was also created for both manual control and optimized control scenarios to determine average delays for each approach and to improve the interpretation of macroscopic Synchro results. Findings indicate that traffic officers perform well in near saturated conditions; however, optimized signal timings provide reduced approach delay and overall intersection delay in heavily oversaturated conditions. The paper includes recommendations on how traffic officers can improve intersection performance. The paper also describes how results from data collection, analysis, and simulation modeling have been used to make recommendations to law enforcement in evaluating traffic operations and identifying improvements. Intersection control is crucial to the implementation of the overall traffic management plan, and the research findings provide insight to the effectiveness of law enforcement control of intersection operations.","PeriodicalId":62390,"journal":{"name":"交通与运输工程:英文版","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"交通与运输工程:英文版","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.11648/J.AJTTE.20200502.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Crowd ingress and egress occurring before and after large special events results in oversaturation of the traffic network and is a crucial issue event planners and transportation officials must address. Because intersections constitute the greatest restraint in network traffic flows, efficient operation during special event peak flows is crucial. This research focuses on evaluating how well traffic control officers optimize intersection operations during heavily oversaturated conditions associated with large-scale special events. Network traffic data, including volumes, queues, and traffic officer signal/right-of-way phase times, were collected before and after four Clemson University home football games during the 2014 and 2015 season. Actual traffic count volumes were adjusted to account for vehicle queues and used to develop optimal signal timings using Synchro. These results are compared to field-observed intersection operation using officer directed hand-signaling and officer traffic signal pushbutton operation. A microscopic VISSIM model was also created for both manual control and optimized control scenarios to determine average delays for each approach and to improve the interpretation of macroscopic Synchro results. Findings indicate that traffic officers perform well in near saturated conditions; however, optimized signal timings provide reduced approach delay and overall intersection delay in heavily oversaturated conditions. The paper includes recommendations on how traffic officers can improve intersection performance. The paper also describes how results from data collection, analysis, and simulation modeling have been used to make recommendations to law enforcement in evaluating traffic operations and identifying improvements. Intersection control is crucial to the implementation of the overall traffic management plan, and the research findings provide insight to the effectiveness of law enforcement control of intersection operations.