Scalable Bayesian Multiple Changepoint Detection via Auxiliary Uniformisation

IF 1.7 3区 数学 Q1 STATISTICS & PROBABILITY International Statistical Review Pub Date : 2022-06-15 DOI:10.1111/insr.12511
Lu Shaochuan
{"title":"Scalable Bayesian Multiple Changepoint Detection via Auxiliary Uniformisation","authors":"Lu Shaochuan","doi":"10.1111/insr.12511","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we perform a sparse filtering recursion for efficient changepoint detection for discrete-time observations. We attach auxiliary event times to the chronologically ordered observations and formulate multiple changepoint problems of discrete-time observations into continuous-time observations. Ideally, both the computational and memory costs of the proposed auxiliary uniformisation forward-filtering backward-sampling algorithm can be quadratically scaled down to the number of changepoints instead of the number of observations, which would otherwise be prohibitive for a long sequence of observations. To avoid model bias, a time-varying changepoint recurrence rate across different segments is assumed to characterise diverse scales of run lengths of the changepoints. We demonstrate the methods through simulation studies and real data analysis.</p>\n </div>","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":"91 1","pages":"88-113"},"PeriodicalIF":1.7000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Statistical Review","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12511","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we perform a sparse filtering recursion for efficient changepoint detection for discrete-time observations. We attach auxiliary event times to the chronologically ordered observations and formulate multiple changepoint problems of discrete-time observations into continuous-time observations. Ideally, both the computational and memory costs of the proposed auxiliary uniformisation forward-filtering backward-sampling algorithm can be quadratically scaled down to the number of changepoints instead of the number of observations, which would otherwise be prohibitive for a long sequence of observations. To avoid model bias, a time-varying changepoint recurrence rate across different segments is assumed to characterise diverse scales of run lengths of the changepoints. We demonstrate the methods through simulation studies and real data analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过辅助均匀化的可扩展贝叶斯多变更点检测
在本文中,我们执行稀疏滤波递归来有效地检测离散时间观测的变化点。我们将辅助事件时间附加到按时间顺序排序的观测中,并将离散时间观测的多个变点问题表述为连续时间观测。理想情况下,所提出的辅助均匀化前向滤波后向采样算法的计算和内存成本都可以二次缩小到变化点的数量,而不是观测值的数量,否则对于长序列的观测值来说,这将是令人难以接受的。为了避免模型偏差,我们假设不同时间段的时变变点复发率表征不同尺度的变点运行长度。通过仿真研究和实际数据分析,对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Statistical Review
International Statistical Review 数学-统计学与概率论
CiteScore
4.30
自引率
5.00%
发文量
52
审稿时长
>12 weeks
期刊介绍: International Statistical Review is the flagship journal of the International Statistical Institute (ISI) and of its family of Associations. It publishes papers of broad and general interest in statistics and probability. The term Review is to be interpreted broadly. The types of papers that are suitable for publication include (but are not limited to) the following: reviews/surveys of significant developments in theory, methodology, statistical computing and graphics, statistical education, and application areas; tutorials on important topics; expository papers on emerging areas of research or application; papers describing new developments and/or challenges in relevant areas; papers addressing foundational issues; papers on the history of statistics and probability; white papers on topics of importance to the profession or society; and historical assessment of seminal papers in the field and their impact.
期刊最新文献
Issue Information Statistics: Multivariate Data Integration Using R; Methods and Applications With the mixOmics Package Kim-Anh Lê Cao, Zoe Marie WelhamChapman & Hall/CRC, 2021, xxi + 308 pages, £84.99/$115.00, hardcover ISBN: 978-1032128078 eBook ISBN: 9781003026860 Philosophies, Puzzles, and Paradoxes: A Statistician's Search for the Truth Yudi Pawitan and Youngjo LeeChapman & Hall/CRC, 2024, xiv + 351 pages, £18.39/$23.96 paperback, £104/$136 hardback, £17.24/$22.46 eBook ISBN: 9781032377391 paperback; 9781032377407 hardback; 9781003341659 ebook Machine Learning Theory and Applications: Hands-On Use Cases With Python on Classical and Quantum Machines, Xavier Vasques, John Wiley & Sons, 2024, xx + 487 pages, $89.95, hardcover ISBN: 978-1-394-22061-8 Object Oriented Data Analysis J. S. Marron and I. L. DrydenChapman & Hall/CRC, 2022, xii + 424 pages, softcover ISBN: 978-0-8153-9282-8 (hbk) ISBN: 978-1-032-11480-4 (pbk) ISBN: 978-1-351-18967-5 (ebk)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1