Sieve bootstrapping the memory parameter in long-range dependent stationary functional time series

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY Asta-Advances in Statistical Analysis Pub Date : 2022-10-01 DOI:10.1007/s10182-022-00463-7
Han Lin Shang
{"title":"Sieve bootstrapping the memory parameter in long-range dependent stationary functional time series","authors":"Han Lin Shang","doi":"10.1007/s10182-022-00463-7","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a sieve bootstrap procedure to quantify the estimation uncertainty of long-memory parameters in stationary functional time series. We use a semiparametric local Whittle estimator to estimate the long-memory parameter. In the local Whittle estimator, discrete Fourier transform and periodogram are constructed from the first set of principal component scores via a functional principal component analysis. The sieve bootstrap procedure uses a general vector autoregressive representation of the estimated principal component scores. It generates bootstrap replicates that adequately mimic the dependence structure of the underlying stationary process. We first compute the estimated first set of principal component scores for each bootstrap replicate and then apply the semiparametric local Whittle estimator to estimate the memory parameter. By taking quantiles of the estimated memory parameters from these bootstrap replicates, we can nonparametrically construct confidence intervals of the long-memory parameter. As measured by coverage probability differences between the empirical and nominal coverage probabilities at three levels of significance, we demonstrate the advantage of using the sieve bootstrap compared to the asymptotic confidence intervals based on normality.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"107 3","pages":"421 - 441"},"PeriodicalIF":1.4000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-022-00463-7.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-022-00463-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

We consider a sieve bootstrap procedure to quantify the estimation uncertainty of long-memory parameters in stationary functional time series. We use a semiparametric local Whittle estimator to estimate the long-memory parameter. In the local Whittle estimator, discrete Fourier transform and periodogram are constructed from the first set of principal component scores via a functional principal component analysis. The sieve bootstrap procedure uses a general vector autoregressive representation of the estimated principal component scores. It generates bootstrap replicates that adequately mimic the dependence structure of the underlying stationary process. We first compute the estimated first set of principal component scores for each bootstrap replicate and then apply the semiparametric local Whittle estimator to estimate the memory parameter. By taking quantiles of the estimated memory parameters from these bootstrap replicates, we can nonparametrically construct confidence intervals of the long-memory parameter. As measured by coverage probability differences between the empirical and nominal coverage probabilities at three levels of significance, we demonstrate the advantage of using the sieve bootstrap compared to the asymptotic confidence intervals based on normality.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
筛网自举的记忆参数在长期依赖平稳函数时间序列
我们考虑了一种筛子自举法来量化平稳函数时间序列中长记忆参数估计的不确定性。我们使用半参数局部Whittle估计来估计长记忆参数。在局部Whittle估计中,通过泛函主成分分析,从第一组主成分分数构造离散傅里叶变换和周期图。筛选引导过程使用估计主成分分数的一般向量自回归表示。它产生的自举复制,充分模仿基础平稳过程的依赖结构。我们首先计算估计的每个bootstrap复制的第一组主成分分数,然后应用半参数局部Whittle估计器估计内存参数。通过从这些自举重复中取估计的记忆参数的分位数,我们可以非参数地构造长记忆参数的置信区间。通过在三个显著性水平上测量经验和名义覆盖概率之间的覆盖概率差异,我们证明了与基于正态性的渐近置信区间相比,使用筛选自举法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
期刊最新文献
A note on dynamic spatiotemporal ARCH models: small- and large-sample results Advances in spatial econometrics and geostatistics: methods, theory, and applications Fuzzy C-modes clustering with spatial regularization and noise cluster Editorial Machine Learning Approach for Analyzing Mixed Case Interval Censored Data with a Cured Subgroup.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1