Signalling mechanisms for ROS-induced TRPM2 mediated microglial cell activation

Q4 Biochemistry, Genetics and Molecular Biology Journal of Cellular Neuroscience and Oxidative Stress Pub Date : 2019-06-21 DOI:10.37212/JCNOS.584717
Sharifah Alawieyah Syed Mortadza, Lin-Hua Jiang
{"title":"Signalling mechanisms for ROS-induced TRPM2 mediated microglial cell activation","authors":"Sharifah Alawieyah Syed Mortadza, Lin-Hua Jiang","doi":"10.37212/JCNOS.584717","DOIUrl":null,"url":null,"abstract":"Microglial cell is a highly plastic cell in which it retracts its branched processes upon activation by structurally diverse molecules. Elevation of these molecules in the brain has been implicated in a diversity of diseases conditions in the CNS, where these molecules promote production of toxicity mediators, such as ROS. Microglial cell activation in response to ROS has been of particular interest. Emerging evidence supports a role for the TRPM2 channel in ROS-induced neuroinflammation. Thus, the current study aims to examine the role of the TRPM2 channel in mediating H2O2-induced microglial activation. A multidisciplinary approach was adopted, including primary microglial isolation, single cell calcium imaging, immunocytochemistry, confocal microscopy and computer-aided analysis of cell morphology. H2O2-induced microglial activation were observed in WT microglial cells but were ablated by genetic or pharmacological inhibition of the TRPM2 channel. Exposure to H2O2 raised the [Ca2+]i via promoting Ca2+ influx, which was prevented by TRPM2-KO. H2O2 induced ROS production and PARP-1 activation.  H2O2induced ROS production and PARP-1 activation as well as an increase in the [Ca2+]i and microglial activation, were suppressed by inhibiting PKC and NOX. Furthermore, H2O2-induced PARP-1 activation, increase in the [Ca2+]i and microglial activation were attenuated by inhibiting the Ca2+-sensitive PYK2 and downstream MEK/ERK kinases. The findings provide strong evidence to support that the TRPM2 channel is functionally expressed and plays a major role in ROS-induced Ca2+ signalling as well as cell activation in microglia. Such information is useful for a better understanding of microglial cells in oxidative stress-related pathologies.","PeriodicalId":37782,"journal":{"name":"Journal of Cellular Neuroscience and Oxidative Stress","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Neuroscience and Oxidative Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37212/JCNOS.584717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Microglial cell is a highly plastic cell in which it retracts its branched processes upon activation by structurally diverse molecules. Elevation of these molecules in the brain has been implicated in a diversity of diseases conditions in the CNS, where these molecules promote production of toxicity mediators, such as ROS. Microglial cell activation in response to ROS has been of particular interest. Emerging evidence supports a role for the TRPM2 channel in ROS-induced neuroinflammation. Thus, the current study aims to examine the role of the TRPM2 channel in mediating H2O2-induced microglial activation. A multidisciplinary approach was adopted, including primary microglial isolation, single cell calcium imaging, immunocytochemistry, confocal microscopy and computer-aided analysis of cell morphology. H2O2-induced microglial activation were observed in WT microglial cells but were ablated by genetic or pharmacological inhibition of the TRPM2 channel. Exposure to H2O2 raised the [Ca2+]i via promoting Ca2+ influx, which was prevented by TRPM2-KO. H2O2 induced ROS production and PARP-1 activation.  H2O2induced ROS production and PARP-1 activation as well as an increase in the [Ca2+]i and microglial activation, were suppressed by inhibiting PKC and NOX. Furthermore, H2O2-induced PARP-1 activation, increase in the [Ca2+]i and microglial activation were attenuated by inhibiting the Ca2+-sensitive PYK2 and downstream MEK/ERK kinases. The findings provide strong evidence to support that the TRPM2 channel is functionally expressed and plays a major role in ROS-induced Ca2+ signalling as well as cell activation in microglia. Such information is useful for a better understanding of microglial cells in oxidative stress-related pathologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ROS诱导TRPM2介导的小胶质细胞活化的信号传导机制
小胶质细胞是一种高度可塑性的细胞,在结构多样的分子激活下,其分支过程会收缩。大脑中这些分子的升高与中枢神经系统的多种疾病有关,这些分子促进毒性介质(如ROS)的产生。小胶质细胞活化对活性氧的反应一直是特别感兴趣的。新出现的证据支持TRPM2通道在ros诱导的神经炎症中的作用。因此,本研究旨在研究TRPM2通道在介导h2o2诱导的小胶质细胞激活中的作用。采用多学科方法,包括原代小胶质细胞分离、单细胞钙成像、免疫细胞化学、共聚焦显微镜和计算机辅助细胞形态学分析。在WT小胶质细胞中观察到h2o2诱导的小胶质细胞活化,但通过遗传或药物抑制TRPM2通道来消除。暴露于H2O2通过促进Ca2+内流而提高[Ca2+]i,这是由TRPM2-KO阻止的。H2O2诱导ROS生成和PARP-1激活。h2o2诱导的ROS生成和PARP-1激活,以及[Ca2+]i和小胶质细胞激活的增加,通过抑制PKC和NOX来抑制。此外,h2o2诱导的PARP-1激活、[Ca2+]i的增加和小胶质细胞激活通过抑制Ca2+敏感的PYK2和下游MEK/ERK激酶而减弱。这些发现提供了强有力的证据,支持TRPM2通道的功能表达,并在ros诱导的Ca2+信号传导和小胶质细胞活化中起主要作用。这些信息有助于更好地理解氧化应激相关病理中的小胶质细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cellular Neuroscience and Oxidative Stress
Journal of Cellular Neuroscience and Oxidative Stress Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
1.10
自引率
0.00%
发文量
8
期刊介绍: Journal of Cellular Neuroscience and Oxidative Stress isan online journal that publishes original research articles, reviews and short reviews on themolecular basisofbiophysical,physiological and pharmacological processes thatregulate cellular function, and the control or alteration of these processesby theaction of receptors, neurotransmitters, second messengers, cation, anions,drugsor disease. Areas of particular interest are four topics. They are; 1. Ion Channels (Na+-K+Channels, Cl– channels, Ca2+channels, ADP-Ribose and metabolism of NAD+,Patch-Clamp applications) 2. Oxidative Stress (Antioxidant vitamins, antioxidant enzymes, metabolism of nitric oxide, oxidative stress, biophysics, biochemistry and physiology of free oxygen radicals) 3. Interaction Between Oxidative Stress and Ion Channels in Neuroscience (Effects of the oxidative stress on the activation of the voltage sensitive cation channels, effect of ADP-Ribose and NAD+ on activation of the cation channels which are sensitive to voltage, effect of the oxidative stress on activation of the TRP channels in neurodegenerative diseases such Parkinson’s and Alzheimer’s diseases) 4. Gene and Oxidative Stress (Gene abnormalities. Interaction between gene and free radicals. Gene anomalies and iron. Role of radiation and cancer on gene polymorphism)
期刊最新文献
Circadian rhythms of antioxidant enzymes activity, clock, and inflammation factors are disrupted in the prefrontal cortex of aged rats. Potential targets for therapeutic strategies for a healthy aging. Neuroprotective Effect of Colocasia esculenta Var. Mentawai Corm Flour High-Fat Diet Fed Mice Protective effect of N-acetylcysteine on hippocampal ferroptosis in an experimental obesity model Regulatory role of phospholipase A2 inhibitor in oxidative stress and inflammation induced by an experimental mouse migraine model Fasting alters p75NTR and AgRP mRNA expression in rat olfactory bulb and hippocampus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1