{"title":"Microchannel Surface Structures for Drag Reduction","authors":"D. S. Gluzdov, E. Ya. Gatapova","doi":"10.1134/S1810232823020042","DOIUrl":null,"url":null,"abstract":"<p>There are many different designs of microchannels for fluid transport or heat transfer purposes. The most challenging problem is selecting the shape and boundary structure of the microchannel walls so that they meet all the requirements and be most optimal and efficient at high flow rates. Various studies show that applying superhydrophobic surface to the microchannel walls can significantly reduce drag forces; however, the characteristics of the best surface structure for a superhydrophobic boundary condition are still unknown. To clarify this problem, we have reviewed different possible engineering solutions for surface structure options, their effect on reducing microchannel drag, and compared them in the present paper.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232823020042","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
There are many different designs of microchannels for fluid transport or heat transfer purposes. The most challenging problem is selecting the shape and boundary structure of the microchannel walls so that they meet all the requirements and be most optimal and efficient at high flow rates. Various studies show that applying superhydrophobic surface to the microchannel walls can significantly reduce drag forces; however, the characteristics of the best surface structure for a superhydrophobic boundary condition are still unknown. To clarify this problem, we have reviewed different possible engineering solutions for surface structure options, their effect on reducing microchannel drag, and compared them in the present paper.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.