Microstrip Patch Antenna Miniaturization Using Magneto-Dielectric Substrates for Electromagnetic Energy Harvesting

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Communications Software and Systems Pub Date : 2021-06-30 DOI:10.24138/JCOMSS-2020-0005
Taher AlSharabati
{"title":"Microstrip Patch Antenna Miniaturization Using Magneto-Dielectric Substrates for Electromagnetic Energy Harvesting","authors":"Taher AlSharabati","doi":"10.24138/JCOMSS-2020-0005","DOIUrl":null,"url":null,"abstract":"A mathematical modelling, and a derivation of the main parameters of the Magneto – Dielectric materials (substrate) and their effect on microstrip patch antenna design is shown. The Magneto – Dielectric materials (substrate) is shown to miniaturize the antenna size and enhance the bandwidth when used in the design of the microstrip patch antenna. The progression of the foundational modelling starts with laying out the concepts of the ferrimagnetic materials in terms of their permeability and permittivity, the components of antenna miniaturization. First, a ground free elliptical microstrip patch antenna (GFDSEPA) is simulated for miniaturization purposes at the 900MHz cellular band. A size reduction of almost 50% as well as bandwidth enhancement (100%) is achieved by utilizing the GFDSEPA. More size reduction is achieved by employing the magneto – dielectric structure; in this case the commercially available Rogers MAGTREX 555 substrate is used. Other performance parameters show comparable results between the antenna simulated based on dielectric only substrate and the one based on magneto–dielectric substrate. A comparison of the main parameters between the results of this work and other results in the literature is shown. The application of the microstrip patch antenna design in energy harvesting, by using a rectifier circuit, is shown. Layout scenarios of the energy harvester are proposed. The proposed layout of the energy harvester ensures practicality of the proposed design and assures correlation between simulation results and experimental results.","PeriodicalId":38910,"journal":{"name":"Journal of Communications Software and Systems","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications Software and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24138/JCOMSS-2020-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

A mathematical modelling, and a derivation of the main parameters of the Magneto – Dielectric materials (substrate) and their effect on microstrip patch antenna design is shown. The Magneto – Dielectric materials (substrate) is shown to miniaturize the antenna size and enhance the bandwidth when used in the design of the microstrip patch antenna. The progression of the foundational modelling starts with laying out the concepts of the ferrimagnetic materials in terms of their permeability and permittivity, the components of antenna miniaturization. First, a ground free elliptical microstrip patch antenna (GFDSEPA) is simulated for miniaturization purposes at the 900MHz cellular band. A size reduction of almost 50% as well as bandwidth enhancement (100%) is achieved by utilizing the GFDSEPA. More size reduction is achieved by employing the magneto – dielectric structure; in this case the commercially available Rogers MAGTREX 555 substrate is used. Other performance parameters show comparable results between the antenna simulated based on dielectric only substrate and the one based on magneto–dielectric substrate. A comparison of the main parameters between the results of this work and other results in the literature is shown. The application of the microstrip patch antenna design in energy harvesting, by using a rectifier circuit, is shown. Layout scenarios of the energy harvester are proposed. The proposed layout of the energy harvester ensures practicality of the proposed design and assures correlation between simulation results and experimental results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于电磁能量采集的磁介质基片微带贴片天线小型化
给出了磁介质材料(衬底)的数学模型和主要参数的推导,以及它们对微带贴片天线设计的影响。磁介电材料(衬底)在微带贴片天线设计中具有减小天线尺寸和提高带宽的作用。基础建模的进展从铁磁材料的磁导率和介电常数(天线小型化的组成部分)的概念开始。首先,模拟了900MHz蜂窝频段的小型化无地椭圆微带贴片天线(GFDSEPA)。通过使用GFDSEPA,尺寸减小了近50%,带宽增强了100%。采用磁介电结构可实现更大的尺寸缩小;在这种情况下,使用市售的罗杰斯MAGTREX 555基板。在其他性能参数上,基于纯介质基片的天线与基于磁介质基片的天线仿真结果相当。本文的结果与文献中其他结果的主要参数进行了比较。介绍了微带贴片天线设计在整流电路能量收集中的应用。提出了能量采集器的布置方案。所提出的能量采集器布局保证了所提出设计的实用性,并保证了仿真结果与实验结果的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Communications Software and Systems
Journal of Communications Software and Systems Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
14.30%
发文量
28
审稿时长
8 weeks
期刊最新文献
Assessment of Transmitted Power Density in the Planar Multilayer Tissue Model due to Radiation from Dipole Antenna Signature-based Tree for Finding Frequent Itemsets Friendy: A Deep Learning based Framework for Assisting in Young Autistic Children Psychotherapy Interventions Ensemble of Local Texture Descriptor for Accurate Breast Cancer Detection from Histopathologic Images Comparison of Similarity Measures for Trajectory Clustering - Aviation Use Case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1