Molecular Docking of the Inhibitory Activities of Triterpenoids of Lonchocarpus cyanescens against Ulcer

I. Adejoro, Sodiq O. Waheed, O. Adeboye, F. U. Akhigbe
{"title":"Molecular Docking of the Inhibitory Activities of Triterpenoids of Lonchocarpus cyanescens against Ulcer","authors":"I. Adejoro, Sodiq O. Waheed, O. Adeboye, F. U. Akhigbe","doi":"10.4236/JBPC.2017.81001","DOIUrl":null,"url":null,"abstract":"Ulcer is one of the life threatening diseases. It is an open sore on an external or internal surface of the body caused by a break in the skin or mucous membrane which fails to heal. In this work, specific ligands that are suitable for ulcer have been studied computationally. Docking of the triterpenoids of Lonchocarpus cyanescens with target proteins of PDB codes 1AFC, 1AXM and 2AXM were performed using AutoDock Vina and Pymol for docking and post-docking analysis, respectively. In this study, the triterpenoid ligands with binding affinity/inhibitory constants -7.2/5.21, -6.5/16.99 and -6.2/28.20 for OH, and -6.7/12.12, -6.3/23.82 and -6.1/33.40 for OCH3 were compared with the standard ligands. Our study indicates that the results corresponding to triterpenoid ligands are close to standard ligands.","PeriodicalId":62927,"journal":{"name":"生物物理化学(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理化学(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JBPC.2017.81001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Ulcer is one of the life threatening diseases. It is an open sore on an external or internal surface of the body caused by a break in the skin or mucous membrane which fails to heal. In this work, specific ligands that are suitable for ulcer have been studied computationally. Docking of the triterpenoids of Lonchocarpus cyanescens with target proteins of PDB codes 1AFC, 1AXM and 2AXM were performed using AutoDock Vina and Pymol for docking and post-docking analysis, respectively. In this study, the triterpenoid ligands with binding affinity/inhibitory constants -7.2/5.21, -6.5/16.99 and -6.2/28.20 for OH, and -6.7/12.12, -6.3/23.82 and -6.1/33.40 for OCH3 were compared with the standard ligands. Our study indicates that the results corresponding to triterpenoid ligands are close to standard ligands.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
青花龙葵三萜对溃疡抑制活性的分子对接
溃疡是一种危及生命的疾病。它是由皮肤或粘膜破裂而无法愈合引起的身体外部或内部表面的开放性疮。在这项工作中,对适合溃疡的特定配体进行了计算研究。利用AutoDock Vina软件和Pymol软件,分别将长chocarpus cyanescens的三萜与PDB编码1AFC、1AXM和2AXM的靶蛋白进行对接和对接后分析。本研究对OH的结合亲和力/抑制常数分别为-7.2/5.21、-6.5/16.99和-6.2/28.20,OCH3的结合亲和力/抑制常数分别为-6.7/12.12、-6.3/23.82和-6.1/33.40的三萜配体与标准配体进行了比较。我们的研究表明,三萜配体对应的结果接近标准配体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
144
期刊最新文献
The Gastropod Shell Structure as a Blueprint for a Periodic System: A New Theory for Element Configurations The Biochemical Impact by Covalent Shielding of the Anionic Oxygen of the Phosphate Group in DNA and RNA as Methylated Phosphotriester Linkage on the Inhibition of DNA Duplication and on HIV-1 RNA Viral Infectivity Has Been Seriously Overlooked Analysis of Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor-Induced Left Ventricular Dysfunction Design of N-11-Azaartemisinins Potentially Active against Plasmodium falciparum by Combined Molecular Electrostatic Potential, Ligand-Receptor Interaction and Models Built with Supervised Machine Learning Methods Chemometric Analysis of Volatile Compounds of NIPRINEEM Oil and Other Brands of Neem Seed Oils Sold in Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1