Meta-Learning of Evolutionary Strategy for Stock Trading

Erik Sorensen, Ryan Ozzello, Rachael Rogan, Ethan Baker, N. Parks, Wei Hu
{"title":"Meta-Learning of Evolutionary Strategy for Stock Trading","authors":"Erik Sorensen, Ryan Ozzello, Rachael Rogan, Ethan Baker, N. Parks, Wei Hu","doi":"10.4236/jdaip.2020.82005","DOIUrl":null,"url":null,"abstract":"Meta-learning algorithms learn about the learning process itself so it can speed up subsequent similar learning tasks with fewer data and iterations. If achieved, these benefits expand the flexibility of traditional machine learning to areas where there are small windows of time or data available. One such area is stock trading, where the relevance of data decreases as time passes, requiring fast results on fewer data points to respond to fast-changing market trends. We, to the best of our knowledge, are the first to apply meta-learning algorithms to an evolutionary strategy for stock trading to decrease learning time by using fewer iterations and to achieve higher trading profits with fewer data points. We found that our meta-learning approach to stock trading earns profits similar to a purely evolutionary algorithm. However, it only requires 50 iterations during test, versus thousands that are typically required without meta-learning, or 50% of the training data during test.","PeriodicalId":71434,"journal":{"name":"数据分析和信息处理(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"数据分析和信息处理(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/jdaip.2020.82005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Meta-learning algorithms learn about the learning process itself so it can speed up subsequent similar learning tasks with fewer data and iterations. If achieved, these benefits expand the flexibility of traditional machine learning to areas where there are small windows of time or data available. One such area is stock trading, where the relevance of data decreases as time passes, requiring fast results on fewer data points to respond to fast-changing market trends. We, to the best of our knowledge, are the first to apply meta-learning algorithms to an evolutionary strategy for stock trading to decrease learning time by using fewer iterations and to achieve higher trading profits with fewer data points. We found that our meta-learning approach to stock trading earns profits similar to a purely evolutionary algorithm. However, it only requires 50 iterations during test, versus thousands that are typically required without meta-learning, or 50% of the training data during test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
股票交易进化策略的元学习
元学习算法了解学习过程本身,因此可以用更少的数据和迭代来加快后续类似的学习任务。如果实现了这些好处,将传统机器学习的灵活性扩展到时间或数据窗口较小的领域。其中一个领域是股票交易,数据的相关性随着时间的推移而降低,需要在更少的数据点上快速得出结果,以应对快速变化的市场趋势。据我们所知,我们是第一个将元学习算法应用于股票交易的进化策略的人,通过使用更少的迭代来减少学习时间,并通过更少的数据点来实现更高的交易利润。我们发现,我们的股票交易元学习方法赚取的利润类似于纯粹的进化算法。然而,它在测试期间只需要50次迭代,而在没有元学习的情况下通常需要数千次迭代,或者在测试期间需要50%的训练数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
91
期刊最新文献
A Hybrid Neural Network Model Based on Transfer Learning for Forecasting Forex Market Enhancing Police Officers’ Cybercrime Investigation Skills Using a Checklist Tool A Sufficient Statistical Test for Dynamic Stability Lung Cancer Prediction from Elvira Biomedical Dataset Using Ensemble Classifier with Principal Component Analysis Modelling Key Population Attrition in the HIV and AIDS Programme in Kenya Using Random Survival Forests with Synthetic Minority Oversampling Technique-Nominal Continuous
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1