A Hybridization of Machine Learning and NSGA-II for Multi-Objective Optimization of Surface Roughness and Cutting Force in ANSI 4340 Alloy Steel Turning
Anh-Tu Nguyen, Van-Hai Nguyen, Tien-Thinh Le, N. Nguyen
{"title":"A Hybridization of Machine Learning and NSGA-II for Multi-Objective Optimization of Surface Roughness and Cutting Force in ANSI 4340 Alloy Steel Turning","authors":"Anh-Tu Nguyen, Van-Hai Nguyen, Tien-Thinh Le, N. Nguyen","doi":"10.36897/jme/160172","DOIUrl":null,"url":null,"abstract":"This work focuses on optimizing process parameters in turning AISI 4340 alloy steel. A hybridization of Machine Learning (ML) algorithms and a Non-Dominated Sorting Genetic Algorithm (NSGA-II) is applied to find the Pareto solution. The objective functions are a simultaneous minimum of average surface roughness (Ra) and cutting force under the cutting parameter constraints of cutting speed, feed rate, depth of cut, and tool nose radius in a range of 50–375 m/min, 0.02–0.25 mm/rev, 0.1–1.5 mm, and 0.4–0.8 mm, respectively. The present study uses five ML models – namely SVR, CAT, RFR, GBR, and ANN – to predict Ra and cutting force. Results indicate that ANN offers the best predictive performance in respect of all accuracy metrics: root-mean-squared-error (RMSE), mean-absolute-error (MAE), and coefficient of determination ( R 2 ). In addition, a hybridization of NSGA-II and ANN is implemented to find the optimal solutions for machining parameters, which lie on the Pareto front. The results of this multi-objective optimization indicate that Ra lies in a range between 1.032 and 1.048 µm, and cutting force was found to range between 7.981 and 8.277 kgf for the five selected Pareto solutions. In the set of non-dominated keys, none of the individual solutions is superior to any of the others, so it is the manufacturer's decision which dataset to select. Results summarize the value range in the Pareto solutions generated by NSGA-II: cutting speeds between 72.92 and 75.11 m/min, a feed rate of 0.02 mm/rev, a depth of cut between 0.62 and 0.79 mm, and a tool nose radius of 0.4 mm, are recommended. Following that, experimental validations were finally conducted to verify the optimization procedure.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/160172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
This work focuses on optimizing process parameters in turning AISI 4340 alloy steel. A hybridization of Machine Learning (ML) algorithms and a Non-Dominated Sorting Genetic Algorithm (NSGA-II) is applied to find the Pareto solution. The objective functions are a simultaneous minimum of average surface roughness (Ra) and cutting force under the cutting parameter constraints of cutting speed, feed rate, depth of cut, and tool nose radius in a range of 50–375 m/min, 0.02–0.25 mm/rev, 0.1–1.5 mm, and 0.4–0.8 mm, respectively. The present study uses five ML models – namely SVR, CAT, RFR, GBR, and ANN – to predict Ra and cutting force. Results indicate that ANN offers the best predictive performance in respect of all accuracy metrics: root-mean-squared-error (RMSE), mean-absolute-error (MAE), and coefficient of determination ( R 2 ). In addition, a hybridization of NSGA-II and ANN is implemented to find the optimal solutions for machining parameters, which lie on the Pareto front. The results of this multi-objective optimization indicate that Ra lies in a range between 1.032 and 1.048 µm, and cutting force was found to range between 7.981 and 8.277 kgf for the five selected Pareto solutions. In the set of non-dominated keys, none of the individual solutions is superior to any of the others, so it is the manufacturer's decision which dataset to select. Results summarize the value range in the Pareto solutions generated by NSGA-II: cutting speeds between 72.92 and 75.11 m/min, a feed rate of 0.02 mm/rev, a depth of cut between 0.62 and 0.79 mm, and a tool nose radius of 0.4 mm, are recommended. Following that, experimental validations were finally conducted to verify the optimization procedure.
期刊介绍:
ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.