Potential of MicroRNAs As Biomarkers and Therapeutic Targets in Respiratory Viruses: A Literature Review.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY DNA and cell biology Pub Date : 2022-06-01 DOI:10.1089/dna.2021.1101
Omid Kooshkaki, A. Asghari, R. Mahdavi, Ghodsiyeh Azarkar, N. Parsamanesh
{"title":"Potential of MicroRNAs As Biomarkers and Therapeutic Targets in Respiratory Viruses: A Literature Review.","authors":"Omid Kooshkaki, A. Asghari, R. Mahdavi, Ghodsiyeh Azarkar, N. Parsamanesh","doi":"10.1089/dna.2021.1101","DOIUrl":null,"url":null,"abstract":"MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression through recognition of cognate sequences and interference of transcriptional, translational, or epigenetic processes. Hundreds of miRNA genes have been found in diverse viruses, and many of these are phylogenetically conserved. Respiratory viruses are the most frequent causative agents of disease in humans, with a significant impact on morbidity and mortality worldwide. Recently, the role of miRNAs in respiratory viral gene regulation, as well as host gene regulation during disease progression, has become a field of interest. This review highlighted the importance of various miRNAs and their potential role in fighting with respiratory viruses as therapeutic molecules with a focus on COVID-19.","PeriodicalId":11248,"journal":{"name":"DNA and cell biology","volume":"41 6 1","pages":"544-563"},"PeriodicalIF":2.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2021.1101","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression through recognition of cognate sequences and interference of transcriptional, translational, or epigenetic processes. Hundreds of miRNA genes have been found in diverse viruses, and many of these are phylogenetically conserved. Respiratory viruses are the most frequent causative agents of disease in humans, with a significant impact on morbidity and mortality worldwide. Recently, the role of miRNAs in respiratory viral gene regulation, as well as host gene regulation during disease progression, has become a field of interest. This review highlighted the importance of various miRNAs and their potential role in fighting with respiratory viruses as therapeutic molecules with a focus on COVID-19.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微小RNA在呼吸道病毒中作为生物标志物和治疗靶点的潜力:文献综述。
MicroRNAs (miRNAs)是一种小的非编码rna,通过识别同源序列和干扰转录、翻译或表观遗传过程来调节基因表达。在不同的病毒中发现了数百种miRNA基因,其中许多在系统发育上是保守的。呼吸道病毒是人类最常见的致病因子,对全世界的发病率和死亡率有重大影响。近年来,mirna在呼吸道病毒基因调控以及疾病进展过程中宿主基因调控中的作用已成为人们关注的领域。这篇综述强调了各种mirna的重要性及其作为治疗分子在对抗呼吸道病毒中的潜在作用,重点是COVID-19。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
DNA and cell biology
DNA and cell biology 生物-生化与分子生物学
CiteScore
6.60
自引率
0.00%
发文量
93
审稿时长
1.5 months
期刊介绍: DNA and Cell Biology delivers authoritative, peer-reviewed research on all aspects of molecular and cellular biology, with a unique focus on combining mechanistic and clinical studies to drive the field forward. DNA and Cell Biology coverage includes: Gene Structure, Function, and Regulation Gene regulation Molecular mechanisms of cell activation Mechanisms of transcriptional, translational, or epigenetic control of gene expression Molecular Medicine Molecular pathogenesis Genetic approaches to cancer and autoimmune diseases Translational studies in cell and molecular biology Cellular Organelles Autophagy Apoptosis P bodies Peroxisosomes Protein Biosynthesis and Degradation Regulation of protein synthesis Post-translational modifications Control of degradation Cell-Autonomous Inflammation and Host Cell Response to Infection Responses to cytokines and other physiological mediators Evasive pathways of pathogens.
期刊最新文献
Ectopic Expression of a Transmembrane Protein KaCyt b6 from a Red Seaweed Kappaphycus alvarezii in Transgenic Tobacco Augmented the Photosynthesis and Growth. Acknowledgment of Reviewers 2023. De Novo Mutation in KRT1 Leads to Epidermolytic Palmoplantar Keratoderma: from Chinese Traditional Treatment to Prenatal Diagnosis Using Whole-Exome Sequencing-Plus. Altered G-Protein Transduction Protein Gene Expression in the Testis of Infertile Patients with Nonobstructive Azoospermia. HSP90 and Noncoding RNAs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1