Wall slip is a microscopic phenomenon of cemented paste backfill (CPB) slurry near the pipe wall, which has an important influence on the form of slurry pipe transport flow and velocity distribution. Directly probing the wall slip characteristics using conventional experimental methods is difficult. Therefore, this paper established a noncontact experimental platform for monitoring the microscopic slip layer of CPB pipeline transport independently based on particle image velocimetry (PIV) and analyzed the effects of slurry temperature, pipe diameter, solid concentration, and slurry flow on the wall slip velocity of the CPB slurry, which refined the theory of the effect of wall slip characteristics on pipeline transport. The results showed that the CPB slurry had an extensive slip layer at the pipe wall with significant wall slip. High slurry temperature improved the degree of particle Brownian motion within the slurry and enhanced the wall slip effect. Increasing the pipe diameter was not conducive to the formation of the slurry slip layer and led to a transition in the CPB slurry flow pattern. The increase in the solid concentration raised the interlayer shear effect of CPB slurry flow and the slip velocity. The slip velocity value increased from 0.025 to 0.056 m·s−1 when the solid content improved from 55wt% to 65wt%. When slurry flow increased, the CPB slurry flocculation structure changed, which affected the slip velocity, and the best effect of slip layer resistance reduction was achieved when the transported flow rate was 1.01 m3·h−1. The results had important theoretical significance for improving the stability and economy of the CPB slurry in the pipeline.